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Gradient Descent in Learning and Optimization

The use of natural gradient descent in statistics and machine
learning was first proposed by Amari in 1998

▸ Policy Learning in Reinforment Learning

▸ Neural Networks Training

▸ Bayesian Variational Inference

▸ Stochastic Relaxation
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Black-box Optimization

Suppose we want to optimized a function f ∶ Ω→ R, however:

▸ you don’t have direct access to an explicit formula for f

▸ given x ∈ Ω, you can evaluate f(x) ∈ R
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Black-box Optimization

Suppose we want to optimized a function f ∶ Ω→ R, however:

▸ you don’t have direct access to an explicit formula for f

▸ given x ∈ Ω, you can evaluate f(x) ∈ R

One näive approach is a local search:

0. define a neighborhood function V(x) ⊂ Ω
t = 0
x0 chosen randomly

1. xt+1 = argmax x∈V(xt) f(x)

2. t = t + 1

3. repeat 1-2 until convergence
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Local Search Has Some Drawbacks

▸ For Ω = Rn, gradient cannot be evaluate directly, since f is
unknown

▸ The choice of the V(x) may determine premature convergence
to local minima
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Local Search Has Some Drawbacks

▸ For Ω = Rn, gradient cannot be evaluate directly, since f is
unknown

▸ The choice of the V(x) may determine premature convergence
to local minima

▸ Some randomness may be useful in the exploration of the
search space

▸ For large V(x), the search space can be sampled: random
search

As an alternative approach, we can introduce a statistical model to
guide the search for the optimum

A probability density function over Ω can be used to concentrate
probability mass around certain regions of the search space
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▸ f(x) ∶ Ω→ R the objective function

▸ Ω a finite search search space



3/1

Some Notation: Finite Case

▸ f(x) ∶ Ω→ R the objective function

▸ Ω a finite search search space

▸ p(x) a probability distribution over the sample space Ω

▸ p0 the uniform distribution over Ω

▸ ∆n the n-dimensional probability simplex



3/1

Some Notation: Finite Case

▸ f(x) ∶ Ω→ R the objective function

▸ Ω a finite search search space

▸ p(x) a probability distribution over the sample space Ω

▸ p0 the uniform distribution over Ω

▸ ∆n the n-dimensional probability simplex

▸ M = {p(x;ξ) ∶ ξ ∈ Ξ} ⊂∆ a parametrized statistical model

▸ ξ = (ξ1, . . . , ξd) a parameter vector for p
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Stochastic Relaxation

Consider the minimization problem

(P) min
x∈Ω

f(x)
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Consider the minimization problem

(P) min
x∈Ω

f(x)
We define the Stochastic Relaxation (SR) of f as

F (p) = Ep[f]
We look for the minimum of f by optimizing its SR

(SR) inf
p∈M

F (p)
[Remark 1] We take inf, since in general M may not be closed
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Stochastic Relaxation

Consider the minimization problem

(P) min
x∈Ω

f(x)
We define the Stochastic Relaxation (SR) of f as

F (p) = Ep[f]
We look for the minimum of f by optimizing its SR

(SR) inf
p∈M

F (p)
[Remark 1] We take inf, since in general M may not be closed

[Remark 2] Candidate solutions for P can be obtained by sampling
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Optimization over a Statistical Manifold

We introduce a chart ξ over M = {p(x;ξ) ∶ ξ ∈ Ξ}
Let F (ξ) = Eξ[f], we have a parametric representation (in
coordinates) of the SR

(SR) inf
ξ∈Ξ

F (ξ)
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A Few Remarks

We move the search onto a statistical model, from a discrete
optimization problem over Ω to a continuous problem overM

In the parametric representation of F , the parameters ξ become
the new variables of the SR

Since ξ ∈ Ξ , we may have a constrained formulation for the SR
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A Few Remarks

We move the search onto a statistical model, from a discrete
optimization problem over Ω to a continuous problem overM

In the parametric representation of F , the parameters ξ become
the new variables of the SR

Since ξ ∈ Ξ , we may have a constrained formulation for the SR

[Remark 3] The SR does not provide lower bounds for P, indeed

min
x∈Ω

f(x) ≤ F (p) ≤max
x∈Ω

f(x)
Let M =∆, minx∈Ω f(x) =minp∈∆F (p)
More in general, forM ⊂∆, minx∈Ω f(x) ≤ infp∈MF (p)
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Closure ofM

We denote with M the topological closure of M, i.e., M together
with the limits of (weakly convergent) sequences of distributions

Moreover, we suppose M is compact so that by the extreme value
theorem F (p) attains its minimum over M
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Equivalence of P and SR

Let us denote the optimal solutions with:

▸ x∗ ∈ Ω∗ = argmin x∈Ω f(x)
▸ p∗ ∈ P ∗ = argmin

p∈MF (p)
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Let us denote the optimal solutions with:

▸ x∗ ∈ Ω∗ = argmin x∈Ω f(x)
▸ p∗ ∈ P ∗ = argmin

p∈MF (p)
The SR is equivalent to P if p∗(x∗) = 1, i.e., we can sample optimal
solutions of P from optimal solutions of SR with probability one

In other words, there must exists a sequence {pt} in M such that

lim
t→∞

pt(x∗) = 1
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Equivalence of P and SR

Let us denote the optimal solutions with:

▸ x∗ ∈ Ω∗ = argmin x∈Ω f(x)
▸ p∗ ∈ P ∗ = argmin

p∈MF (p)
The SR is equivalent to P if p∗(x∗) = 1, i.e., we can sample optimal
solutions of P from optimal solutions of SR with probability one

In other words, there must exists a sequence {pt} in M such that

lim
t→∞

pt(x∗) = 1
A sufficient condition for the equivalence of SR and P is that all
Dirac distribution δx are included inM
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How to solve the SR?

The SR in an optimization problem defined over a statistical model

It can be solved in many different ways, here we focus on natural
gradient descent

ξt+1 = ξt − λ∇F (ξ), λ > 0
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How to solve the SR?

The SR in an optimization problem defined over a statistical model

It can be solved in many different ways, here we focus on natural
gradient descent

ξt+1 = ξt − λ∇F (ξ), λ > 0

Some references:

▸ Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES), Hansen et al., 2001

▸ Natural Evolutionary Strategies (NES), Wierstra et al., 2008

▸ Stochastic Natural Gradient Descent (SNGD), M. et al., 2011

▸ Information Geometry Optimization (IGO), Arnold et al., 2011
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Which Model to Choose in the SR?

Let n be the cardinality of Ω, to parametrize ∆ we need n − 1
parameters

Minimizing F (p) with p ∈∆ is equivalent to an exhaustive search!
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Which Model to Choose in the SR?

Let n be the cardinality of Ω, to parametrize ∆ we need n − 1
parameters

Minimizing F (p) with p ∈∆ is equivalent to an exhaustive search!

We need a low-dimensional models in the SR

▸ The equivalence of P and SR can be easily guaranteed

▸ The landscape (number of local minima) of F (p) depends on
the choice ofM

▸ In practice we need to learn M: model selection

▸ Often it is conveniente to employ graphical models
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Pseudo-Boolean Optimization

Consider the case where Ω = {+1,−1}n, where we use the harmonic
encoding {+1,−1} for a binary variable

−10 = +1 − 11 = −1

A pseudo-Boolean function f is a real-valued mapping

f(x) ∶ Ω = {+1,−1}n → R
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Pseudo-Boolean Optimization

Consider the case where Ω = {+1,−1}n, where we use the harmonic
encoding {+1,−1} for a binary variable

−10 = +1 − 11 = −1

A pseudo-Boolean function f is a real-valued mapping

f(x) ∶ Ω = {+1,−1}n → R

Any f can be expanded uniquely as a square free polynomial

f(x) = ∑
α∈L

cαx
α,

by employing a multi-index notation. Let L = {0,1}n, then
α = (α1, . . . , αn) ∈ L uniquely identifies the monomial xα by

α↦
n

∏
i=1

xαi

i
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Monomial Representation of PS Functions

Let An = A1 ⊗ . . .⊗A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, where ⊗ denotes the Kronecker product

A1 = [
0 1

+ +1 +1
− +1 −1

]
let a = (f(x))x∈Ω, we have Anc = a, c = (cα)α∈L and c = 2−nAna
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n times

, where ⊗ denotes the Kronecker product

A1 = [
0 1

+ +1 +1
− +1 −1

]
let a = (f(x))x∈Ω, we have Anc = a, c = (cα)α∈L and c = 2−nAna

[Example] In case of two variables x = (x1, x2), we have

f(x) = c0 + c1x1 + c2x2 + c12x1x2
x1 x2 f(x)
+1 +1 a++
+1 −1 a+−
−1 +1 a−+
−1 −1 a−−
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Monomial Representation of PS Functions

Let An = A1 ⊗ . . .⊗A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, where ⊗ denotes the Kronecker product

A1 = [
0 1

+ +1 +1
− +1 −1

]
let a = (f(x))x∈Ω, we have Anc = a, c = (cα)α∈L and c = 2−nAna

[Example] In case of two variables x = (x1, x2), we have

f(x) = c0 + c1x1 + c2x2 + c12x1x2
x1 x2 f(x)
+1 +1 a++
+1 −1 a+−
−1 +1 a−+
−1 −1 a−−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
1

4
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

00 10 01 11

++ +1 +1 +1 +1
+− +1 +1 −1 −1
−+ +1 −1 +1 −1
−− +1 −1 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a++
a+−
a−+
a−−

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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The Independence Model

Let I be the independence model for X = (X1, . . . ,Xn)
I = {p ∶ p(x) = n

∏
i=1

pi(xi)}
with marginal probabilities pi(xi) = P(Xi = xi)
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The Independence Model

Let I be the independence model for X = (X1, . . . ,Xn)
I = {p ∶ p(x) = n

∏
i=1

pi(xi)}
with marginal probabilities pi(xi) = P(Xi = xi)
We parametrize I using {±1} Bernoulli distributions for Xi

p(x;µ) = n

∏
i=1

µ
(1+x)/2
i (1 − µi)(1−x)/2

=
n

∏
i=1

(2µixi − xi + 1) /2
with µ = (µ1, . . . , µn) ∈ [0,1]n and

µi = P(Xi = +1)
1 − µi = P(Xi = −1)
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Marginal Parameters for the Independence Model

δ01 δ11

δ10δ00

µ2

µ1

I is a n-dimensional manifold embedded in the 2n − 1 dimensional
probability simplex ∆
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A Toy Example

Let n = 2, Ω = {−1,+1}2, we want to minimize

f(x) = x1 + 2x2 + 3x1x2
x1 x2 f

+1 +1 6
+1 −1 −4
−1 +1 −2
−1 −1 0

−+

−−

++

+−
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A Toy Example

Let n = 2, Ω = {−1,+1}2, we want to minimize

f(x) = x1 + 2x2 + 3x1x2
x1 x2 f

+1 +1 6
+1 −1 −4
−1 +1 −2
−1 −1 0

−+

−−

++

+−

The gradient flow is the solution of the differential equation

ξ̇ = ∇F (ξ),
We are interested in studying gradient flows for different
parameterization and different statistical models
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Gradient Flows on the Independence Model

F (µ) = ∑
x∈Ω

f(x)p1(x1)p2(x2) = −4µ1 − 2µ2 + 12µ1µ2
∇F (µ) = (−4 + 12µ2,−2 + 12µ1)T

Gradient flow in µ
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∇F (η) does not convergence to (local) optima, a projection over
the hyperplanes given by the constraints is required
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Natural Parameters for the Independence Model

If we restrict to positive probabilities p > 0, we can represent the
interior of the independence model as the exponential family

p(x;θ) = exp{ n

∑
i=1

θixi − ψ(θ)}
where ψ(θ) = lnZ(θ) is the log partition function

The natural parameters of the independence modelM1 represented
by an exponential family are θ = (θ1, . . . , θn) ∈ Rn, with

pi(xi) = eθixi

eθi + e−θi
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Natural Parameters for the Independence Model

If we restrict to positive probabilities p > 0, we can represent the
interior of the independence model as the exponential family

p(x;θ) = exp{ n

∑
i=1

θixi − ψ(θ)}
where ψ(θ) = lnZ(θ) is the log partition function

The natural parameters of the independence modelM1 represented
by an exponential family are θ = (θ1, . . . , θn) ∈ Rn, with

pi(xi) = eθixi

eθi + e−θi

The mapping between marginal probabilities and natural
parameters is one-to-one for p > 0

θi = (ln(µi) − ln(1 − µi)) /2 µi =
eθi

eθi + e−θi
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Gradient Flows on the Independence Model

F (θ) = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
∇F (θ) = Eθ[f(X − Eθ[X])] = Covθ(f,X)

Gradient flow in θ
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Gradient Flows on the Independence Model

F (θ) = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
∇F (θ) = Eθ[f(X − Eθ[X])] = Covθ(f,X)

Gradient flow in θ
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In the θ parameters, ∇F (θ) vanishes over the plateaux
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Gradient Flows on the Independence Model

Marginal probabilities µ
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Gradient Flows on the Independence Model

Marginal probabilities µ
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Gradient flows ∇F (ξ) depend on the parameterization

In the η parameters, ∇F (η) does not convergence to the expected
distribution δx∗ over an optimum
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The Exponential Family

In the following, we consider models in the exponential family E

p(x,θ) = exp(m

∑
i=1

θiTi(x) − ψ(θ))

▸ sufficient statistics T = (T1(x), . . . , Tm(x))
▸ natural parameters θ = (θ1, . . . , θm) ∈ Θ ⊂ Rm

▸ log-partition function ψ(θ)
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The Exponential Family

In the following, we consider models in the exponential family E

p(x,θ) = exp(m

∑
i=1

θiTi(x) − ψ(θ))

▸ sufficient statistics T = (T1(x), . . . , Tm(x))
▸ natural parameters θ = (θ1, . . . , θm) ∈ Θ ⊂ Rm

▸ log-partition function ψ(θ)
Several statistical models belong to the exponential family, both in
the continuous and discrete case, among them

▸ the independence model

▸ Markov random fields

▸ multivariate Gaussians
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Markov Random Fields

[Recall] The monomials {xα},α ∈ L, define a basis for f

By choosing a subset of {xα} as sufficient statistics, we can
identify a low-dimensional exponential family parametrized by θ

p(x;θ) = exp⎛⎝ ∑
α∈M⊂L0

θαx
α − ψ(θ)⎞⎠, L0 = L ∖ {0}

Such models are known as

▸ log-liner models
▸ Markov random fields
▸ Boltzmann machines
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Markov Random Fields

[Recall] The monomials {xα},α ∈ L, define a basis for f

By choosing a subset of {xα} as sufficient statistics, we can
identify a low-dimensional exponential family parametrized by θ

p(x;θ) = exp⎛⎝ ∑
α∈M⊂L0

θαx
α − ψ(θ)⎞⎠, L0 = L ∖ {0}

Such models are known as

▸ log-liner models
▸ Markov random fields
▸ Boltzmann machines

We have an interpretation for the topology of the model

▸ The absence of edges in an undirected graphical model implies
conditional independence among variables

▸ Joint probability distributions factorize over the cliques
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Dual Parameterization for the Exponential Family

p(x;θ) = exp(m

∑
i=1

θiTi(x) − ψ(θ))
▸ Exponential families admit a dual parametrization to the

natural parameters, given by the expectation parameters with
η = Eθ[T ]
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θiTi(x) − ψ(θ))
▸ Exponential families admit a dual parametrization to the

natural parameters, given by the expectation parameters with
η = Eθ[T ]

▸ Let ϕ(η) be the negative entropy of p, then θ and η are
connected by the Legendre transform

ψ(θ) + ϕ(η) − ⟨θ,η⟩ = 0
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Dual Parameterization for the Exponential Family

p(x;θ) = exp(m

∑
i=1

θiTi(x) − ψ(θ))
▸ Exponential families admit a dual parametrization to the

natural parameters, given by the expectation parameters with
η = Eθ[T ]

▸ Let ϕ(η) be the negative entropy of p, then θ and η are
connected by the Legendre transform

ψ(θ) + ϕ(η) − ⟨θ,η⟩ = 0
▸ Variable transformations are given by

η = ∇θψ(θ) = (∇ηϕ)−1(θ)
θ = ∇ηϕ(η) = (∇θψ)−1(η)
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Variable Transformations

[Recall] Let An = A1 ⊗ . . .⊗A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, ⊗ denotes the Kronecker product
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ρ = (p(x))x∈Ω to be uniquely identified, with constraints 0 ≤ ρx ≤ 1
and ∑x∈Ω ρx = 1



23/1

Variable Transformations

[Recall] Let An = A1 ⊗ . . .⊗A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, ⊗ denotes the Kronecker product

A probability distribution p ∈∆ requires 2n parameters
ρ = (p(x))x∈Ω to be uniquely identified, with constraints 0 ≤ ρx ≤ 1
and ∑x∈Ω ρx = 1

The expectation parameters η = (ηα),α ∈ L, provide an equivalent
parameterization for p, and since p(x) is a pseudo-Boolean
function itself, we have

ρ = 2−nAnη η = Anρ

Positivity constraints and sum to one, give us η0 = 1 and Anη ≥ 0.
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Variable Transformations

[Recall] Let An = A1 ⊗ . . .⊗A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, ⊗ denotes the Kronecker product

A probability distribution p ∈∆ requires 2n parameters
ρ = (p(x))x∈Ω to be uniquely identified, with constraints 0 ≤ ρx ≤ 1
and ∑x∈Ω ρx = 1

The expectation parameters η = (ηα),α ∈ L, provide an equivalent
parameterization for p, and since p(x) is a pseudo-Boolean
function itself, we have

ρ = 2−nAnη η = Anρ

Positivity constraints and sum to one, give us η0 = 1 and Anη ≥ 0.

The natural parameters θ = (θα), α ∈ L, can be obtained from raw
probabilities, with the constraint θ0 = − logEθ[exp∑α∈L∖{0} θαx

α]
lnρ = 2−nAnθ θ = An lnρ

= − ( )
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Mixed Parametrization for Markov Random Fields

An exponential familyM given by the sufficient statistics{xα},α ∈M , identifies a submanifold in ∆, parametrized by
θ = ((θ)α∈M ;0)
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Mixed Parametrization for Markov Random Fields

An exponential familyM given by the sufficient statistics{xα},α ∈M , identifies a submanifold in ∆, parametrized by
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Mixed Parametrization for Markov Random Fields

An exponential familyM given by the sufficient statistics{xα},α ∈M , identifies a submanifold in ∆, parametrized by
θ = ((θ)α∈M ;0)
By the one-to-one correspondence between η and θ,M can be
parametrized by η = (ηα∈M ;η∗α∉M), where in general η∗α∉M ≠ 0

However, the η∗α∉M parameters are not free and it can be proved
they are given by implicit polynomial algebraic equations in ηα∈M

Due to the duality between θ and η, we can employ a mixed
parametrization forM and parametrize the model as (ηα∈M ;0)
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Algebraic Statistics: Invariants in ρ and η

[Example] Let n = 2, we consider the independence model
parametrized by (θ1, θ2; 0), with θ12 = 0

The same model can be parametrized by (η1, η2; 0), we show
η12 = η1η2
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Algebraic Statistics: Invariants in ρ and η

[Example] Let n = 2, we consider the independence model
parametrized by (θ1, θ2; 0), with θ12 = 0

The same model can be parametrized by (η1, η2; 0), we show
η12 = η1η2

Since θ = An lnρ, by imposing θ12 = 0 we have

lnρ++ + lnρ−− = lnρ+− + lnρ−+
ρ++ρ−− = ρ+−ρ−+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ++
ρ+−
ρ−+
ρ−−

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
1

4
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

00 10 01 11

++ +1 +1 +1 +1
+− +1 +1 −1 −1
−+ +1 −1 +1 −1
−− +1 −1 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

η1
η2
η12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1 + η1 + η2 + η12)(1 − η1 − η2 + η12) = (1 + η1 − η2 − η12)(1 − η1 + η2 − η12)

η12 = η1η2
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Marginal Polytope

The range of the expectation parameters η = Eθ[T ] identifies a
polytope M in Rm called the marginal polytope

The marginal polytope can be obtained as the convex hull of T (Ω),
there T is the vector of sufficient statistics of the model
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Marginal Polytope

The range of the expectation parameters η = Eθ[T ] identifies a
polytope M in Rm called the marginal polytope

The marginal polytope can be obtained as the convex hull of T (Ω),
there T is the vector of sufficient statistics of the model

[Example] Let n = 2, T = (x1, x1x2)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x1x2

++ −1 +1
+− +1 −1
−+ +1 +1
−− −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Convex hull of

(+1,+1)(+1,−1)(−1,−1)(−1,+1)
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Marginal Polytope

The marginal polytope corresponds to the domain for the η

parameters in the SR

▸ For the independence model M = [−1,1]n
▸ For the saturated model M =∆

▸ In the other cases, things can get very “nasty”, indeed the
number of its faces can grow more than exponentially in n
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Marginal Polytope

The marginal polytope corresponds to the domain for the η

parameters in the SR

▸ For the independence model M = [−1,1]n
▸ For the saturated model M =∆

▸ In the other cases, things can get very “nasty”, indeed the
number of its faces can grow more than exponentially in n

[Example] Let n = 3, consider the exponential model with sufficient
statistics given by

{x1, x2, x3, x12, x23, x13}
then the number of hyperplanes of M is 16



28/1

Information Geometry

The geometry of statistical models is not Euclidean

We need tools from differential geometry to define notions such as
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Amari’s Natural Gradient

Why ∇̃ξF (ξ) and not just ∇ξF (ξ) ?

[Short answer]

The geometry ofM is not Euclidean

∇̃ξF (ξ) is the natural gradient, i.e., the direction of steepest
descent evaluated over a statistical model

In general ∇̃ξF (ξ) does not coincide with the vector of partial
derivatives with respect to ξ denoted by ∇ξF (ξ)
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Amari’s Natural Gradient

[Longer answer]

Let M be a statistical manifold endowed with the metric I = [gij],
and let F (p) ∶ M ↦ R be smooth function

For each vector field U over M, the natural gradient ∇̃F , is the
unique vector that satisfies

⟨∇̃F,U⟩g = DU F,

where DU F is the directional derivative of F in the direction of U

Given a coordinate chart (a parameterization) ξ forM, the
representation in coordinates of ∇̃ξF (ξ) reads

∇̃ξF (ξ) = k

∑
i=1

k

∑
j=1

gij
∂F (ξ)
∂ξi

∂

∂ξj
= Iξ(ξ)−1∇ξF (ξ)

The metric forM is the Fisher information matrix
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Geometry of the Exponential Family

In case of a finite sample space Ω, we have

p(x;θ) = exp(m

∑
i=1

θiTi(x) −ψ(θ)) θ ∈ Rm

and

Tθ = {v ∶ v = k

∑
i=1

ai(Ti(x) −Eθ[Ti]), ai ∈ R}



31/1

Geometry of the Exponential Family

In case of a finite sample space Ω, we have

p(x;θ) = exp(m

∑
i=1

θiTi(x) −ψ(θ)) θ ∈ Rm

and

Tθ = {v ∶ v = k

∑
i=1

ai(Ti(x) −Eθ[Ti]), ai ∈ R}

Since ∇F (θ) = Covθ(f,T ), if f ∈ Tp, the steepest direction is
given by f −Eθ[f], otherwise we take the projection f̂ of f onto Tp

f̂ =
m

∑
i=1

âi(Ti(x) −Eθ[Ti]),
and obtain f̂ by solving a system of linear equations
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The Big Picture

If f ∉ Tp, the projection f̂ may vanish, and local minima may
appear
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Vanilla vs Natural Gradient: η, λ = 0.05

Vanilla gradient ∇F (η)
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Vanilla vs Natural Gradient: η, λ = 0.05

Vanilla gradient ∇F (η)

−1.0 −0.5 0.0 0.5 1.0
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1
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0
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0
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1
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η
2

Natural gradient ∇̃F (η)
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1
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0
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0
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0
.5

1
.0
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η

2

In both cases there exist two basins of attraction, however ∇̃F (η)
convergences to δx distributions, which are local optima for F (η)
and where ∇̃F (δx) = 0
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Vanilla vs Natural Gradient: θ, λ = 0.15

Vanilla gradient ∇F (θ)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

θ1

θ
2



34/1

Vanilla vs Natural Gradient: θ, λ = 0.15

Vanilla gradient ∇F (θ)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

θ1

θ
2

Natural gradient ∇̃F (θ)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

θ1

θ
2

In both cases there exist two basins of attraction, however in the
natural parameters ∇̃F (θ) “speeds up” over the plateaux
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Vanilla vs Natural Gradient

Expectation parameters η
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Natural parameters θ
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∇̃F (p)

Vanilla gradient ∇F vs Natural gradient ∇̃F

The natural gradient flow is invariant to parameterization
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Stochastic Natural Gradient Descent

In the exponential family, the natural gradient descent updating
rule reads

θt+1 = θt − λI(θ)−1∇F (θ), λ > 0

Unfortunately, exact gradients cannot be computed efficiently

▸ in general the partition function must be evaluated

▸ or a change of parametrization from θ to η is required
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Stochastic Natural Gradient Descent

In the exponential family, the natural gradient descent updating
rule reads

θt+1 = θt − λI(θ)−1∇F (θ), λ > 0

Unfortunately, exact gradients cannot be computed efficiently

▸ in general the partition function must be evaluated

▸ or a change of parametrization from θ to η is required

However, due to the properties of the exponential family, natural
gradient can be evaluated by means of covariances

∇F (θ) = Covθ(f,T ) I(θ) = Covθ(T ,T )
As a consequence, stochastic natural gradient can be estimated by
replacing exact gradients with empirical estimates, so that

θt+1 = θt − λĈovθt(T ,T )−1Ĉovθt(f,T ), λ > 0



37/1

Back to the Toy Example

The landscape of F (η) changes according to f and M

[Example] Natural gradient flows in the η are given by

η̇1 = (1 − η21)(a1 + a12η2)
η̇2 = (1 − η22)(a2 + a12η1)
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Back to the Toy Example

The landscape of F (η) changes according to f and M

[Example] Natural gradient flows in the η are given by

η̇1 = (1 − η21)(a1 + a12η2)
η̇2 = (1 − η22)(a2 + a12η1)

WefixM as the independencemodel and study the flows for differenta12

The natural gradient vanishes over

▸ the vertices of the marginal polytope M
▸ c = (−a2/a12,−a1/a12)T

The nature of the critical points can be determined by studying the
eigenvalues of the Hessian

M = [−2η1(a1 + a12η2) a12(1 − η21)
a12(1 − η22) −2η2(a2 + a12η1)]
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Back to the Toy Example: Critical Points

The solutions of the differential equations associated to the flows
can be studied for every value of η, even outside of M
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can be studied for every value of η, even outside of M

Let v ∈ {−1,+1}2 be a vertex of M, the eigenvalues of H are

λ1 = −2v1(a12v2 + a1)
λ2 = −2v2(a12v1 + a2)

According to the signs of λ1 and λ2, each vertex can be either a
stable node (SN), an unstable node (UN) or a saddle point (SP)
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Back to the Toy Example: Critical Points

The solutions of the differential equations associated to the flows
can be studied for every value of η, even outside of M

Let v ∈ {−1,+1}2 be a vertex of M, the eigenvalues of H are

λ1 = −2v1(a12v2 + a1)
λ2 = −2v2(a12v1 + a2)

According to the signs of λ1 and λ2, each vertex can be either a
stable node (SN), an unstable node (UN) or a saddle point (SP)

For c = (−a2/a12,−a1/a12)T
λ1,2 = ±

√(a2
12
− a2

2
)(a2

12
− a2

1
)/a2

12

Follows that c is saddle point for(∣a12∣ ≥ ∣a1∣ ∧ ∣a12∣ ≥ ∣a2∣) ∨ (∣a12∣ ≤ ∣a1∣ ∧ ∣a12∣ ≤ ∣a2∣), in the other
cases, it is a center (C)
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the strength of the
interaction among x1 and
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Back to the Toy Example: Bifurcation Diagram

We can interpret ∣a12∣ as
the strength of the
interaction among x1 and
x2

For ∣a12∣ ≠ 0, c is a saddle
point in the shaded
regions, where there exist

▸ strong interactions,∣a12∣ > ∣a1∣ ∧ ∣a12∣ >∣a2∣, i.e. c ∈M
▸ weak interactions,∣a12∣ < ∣a1∣ ∧ ∣a12∣ <∣a2∣, i.e., c ∉M

In the remaining cases c is
a center

Projection of the bifurcation diagram

(η1, η2, a12) over (η1, η2) for arbitrary

a1, a2 and 0 ≤ a12 <∞

c=(0,0)

a
12

c=(−a
2
,−a

1
)

a
12

=1

µ
1

µ
2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

→ ±∞

The coordinates of c depends on a12, c is

a SP on the dashed lines and a C on the

dotted line; for a12 →∞, c converges to

the center of M
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Back to the Toy Example (M. et al., 2014)

Natural Gradient Flows over (η1, η2) for fixed a12
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Natural Gradient Flows over (η1, η2) for fixed a12

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

µ
1

µ
2

(a12 = 0) 1 SN, 1 UN, 2 SPs

No critical points besides the

vertices of M, all trajectories in M

converge to the global optimum

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

µ
1

µ
2

(a12 = 0.85) 1 SN, 1 UN, 3 SPs

The interaction is weak, c is a SP

and is outside of M so that all flows

converge to the global optimum
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Back to the Toy Example (M. et al., 2014)

Natural Gradient Flows over (η1, η2) for fixed a12
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Natural Gradient Flows over (η1, η2) for fixed a12
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enough to have c ∈M and to
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period solutions
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1

µ
2

(a12 = 5) 2 SNs, 2 UNs, 1 SP

The interaction is strong, c is a SP

and belongs to M, flows converge

to either local or global optimum
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A Second Toy Example

Consider the exponential family over Ω = {1,2,3,4} given by the
sufficient statistics T1, T2:

Ω T1 T2

1 0 0

2 0 1

3 1 0

4 2 1

Marginal Polytope

pθ = exp (θ1T1 + θ2T2 −ψ(θ)) , ψ(θ) = log (1 + eθ2 + eθ1 + e2θ1+θ2)
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A Second Toy Example

Consider the exponential family over Ω = {1,2,3,4} given by the
sufficient statistics T1, T2:

Ω T1 T2

1 0 0

2 0 1

3 1 0

4 2 1

Marginal Polytope

pθ = exp (θ1T1 + θ2T2 −ψ(θ)) , ψ(θ) = log (1 + eθ2 + eθ1 + e2θ1+θ2)

We are interested in natural gradient flows in the mixture geometry
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Stochastic Relaxation

We generate a basis for all f ∶ Ω→ R

{1, x1, x2, x12}
Any f can be written as

f = c0 + c1x1 + c2x2 + c12x1x2
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Stochastic Relaxation

We generate a basis for all f ∶ Ω→ R

{1, x1, x2, x12}
Any f can be written as

f = c0 + c1x1 + c2x2 + c12x1x2

We move to the SR with respect to the model identified by T1, T2

F (η) = Eη[f] = c0 + c1η1 + c2η2 + c12Eη[x1x2]

How do express Eη[x1x2] as a function of η1, η2?
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Orthogonal Space and Markov Basis

Notice that the exponential family is a toric model

We can derive a Markov basis {T3} the orthogonal space of the
space spanned by {1, T1, T2}

Ω 1 T1 T2 T3

1 1 0 0 −2
2 1 0 1 1

3 1 1 0 2

4 1 2 1 −1
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Derivation of the Invariant

From the exponential family log pθ ∈ Span ({1, T1, T2})
log pθ = θ1T1 + θ2T2 −ψ(θ) ,

and thus log pθ ⊥ T3

Let T3 = T +3 − T
−
3 = (0,1,2,0) − (2,0,0,1), orthogonality can be

rewritten as

0 =
4

∑
x=1

log p(x)T3(x)
= ∑

x∶T3(x)>0

log p(x)T +3 (x) − ∑
x∶T3(x)<0

log p(x)T −3 (x)
= log

⎛⎝ ∏
x∶T3(x)>0

p(x)T+3 (x)⎞⎠ − log⎛⎝ ∏
x∶T3(x)<0

p(x)T−3 (x)⎞⎠
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Derivation of the Invariant (cont.)

Remember that T3 = T +3 − T
−
3 = (0,1,2,0) − (2,0,0,1), by dropping

the log in

0 = log
⎛⎝ ∏
x∶T3(x)>0

p(x)T+3 (x)⎞⎠ − log⎛⎝ ∏
x∶T3(x)<0

p(x)T−3 (x)⎞⎠ ,

we obtain the polynomial invariant

p21p4 − p2p
2

3 = 0
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Derivation of the Invariant (cont.)

Remember that T3 = T +3 − T
−
3 = (0,1,2,0) − (2,0,0,1), by dropping

the log in

0 = log
⎛⎝ ∏
x∶T3(x)>0

p(x)T+3 (x)⎞⎠ − log⎛⎝ ∏
x∶T3(x)<0

p(x)T−3 (x)⎞⎠ ,

we obtain the polynomial invariant

p21p4 − p2p
2

3 = 0

Our exponential family for positive probabilities is equivalently
described by

p1 + p2 + p3 + p4 − 1 = 0

p21p4 − p2p
2

3 = 0
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A Surface in the Probability Simplex

The model identifies a surface in the probability simplex

p1 + p2 + p3 + p4 − 1 = 0

p21p4 − p2p
2

3 = 0
δ 1

δ 3

δ 4

δ 2

Probability Simplex ∆3

Notice, the surface is not the independence model as in the
previous example



48/1

Expectation Parameters

We introduce the following matrix:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 T1 T2 T3

1 1 0 0 −2
2 1 0 1 1

3 1 1 0 2

4 1 2 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
In the simplex, probabilities maps into expected values one-to-one

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

η1
η2
η3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

0 0 1 2

0 1 0 1

−2 1 2 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
p3
p4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Expectation Parameters

We introduce the following matrix:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 T1 T2 T3

1 1 0 0 −2
2 1 0 1 1

3 1 1 0 2

4 1 2 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
In the simplex, probabilities maps into expected values one-to-one

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
p3
p4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

5
−1

5
−2

5
−1

5
1

5
−2

5

7

10

1

10
2

5

1

5
−3

5

1

5

−1

5

2

5

3

10
− 1

10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

η1
η2
η3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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A Surface in the Full Marginal Polytope

Then, in the η parameters p21p4 − p2p
2
3 = 0 becomes

(4η1+3η2−η3−2)(η1+2η2+η3−3)2+(4η1−7η2−η3−2)(η1−3η2+η3+2)2 = 0

δ 1

δ 3

δ 4

δ 2

Probability simplex ∆3
Full marginal polytope

The surface on the right has been plotted by evaluating the unique
real root in the interior of the marginal polytope
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Back to the Stochastic Relaxation

We stopped at

F (η) = c0 + c1η1 + c2η2 + c12Eη[x1x2]
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E[x1x2] = 1

5
(4η1 + 3η2 − η3 − 2) ,
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Back to the Stochastic Relaxation

We stopped at

F (η) = c0 + c1η1 + c2η2 + c12Eη[x1x2]
We have T3 = 4x1 + 3x2 − 5x1x2 − 2 and η3 = E[T3], so that

E[x1x2] = 1

5
(4η1 + 3η2 − η3 − 2) ,

which implies

Fη(η) = c0 − 2

5
c12 + (c1 + 4

5
c12) η1 + (c2 + 3

5
c12) η2 − 1

5
c12η3 ,

where η3 is the unique real root as a function of η1, η2

[Remark] The solution of the problem relies on being able to find
real root of the invariant
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Ruled Surfaces
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Ruled Surfaces

It is a well-known result that p21p4 −p2p
2
3 = 0 is a ruled surface in ∆3
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Algebraic Varieties

In the polynomial ring Q[p1, p2, p3, p4], the model ideal

I = ⟨p1 + p2 + p3 + p4 − 1, p21p4 − p2p23⟩
consists of all the polynomials of the form

A (p1 + p2 + p3 + p4 − 1)+B (p21p4 − p2p23) , ∀A,B ∈ Q[p1, p2, p3, p4]

The algebraic variety I uniquely extends the exponential family
outside of ∆3, by means of the Zarinski closure
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Exploiting Ruled Surfaces

Let us discuss in more detail the ruled parameterization of the toric
variety

p1 + p2 + p3 + p4 − 1 = 0

p21p4 − p2p
2
3 = 0
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Exploiting Ruled Surfaces

Let us discuss in more detail the ruled parameterization of the toric
variety

p1 + p2 + p3 + p4 − 1 = 0

p21p4 − p2p
2
3 = 0

The Jacobian matrix is

J = [ 1 1 1 1

2p1p4 −p23 −2p2p3 p21
]

It has rank one, that is, there is a singularity, if, and only if

2p1p4 = −p
2

3 = −2p2p3 = p
2

1 ,

which is equivalent to p21 = p
2
3 = 0
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Exploiting Ruled Surfaces

The subspace p21 = p
2
3 = 0 intersects the model along a double

critical line C, and the simplex along the edge δ2 ↔ δ4

If we take a sheaf of planes through C, by the Bezuot theorem, it
intersects the cubic surface along C and on a a space of degree
3 − 2 = 1
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Exploiting Ruled Surfaces

The subspace p21 = p
2
3 = 0 intersects the model along a double

critical line C, and the simplex along the edge δ2 ↔ δ4

If we take a sheaf of planes through C, by the Bezuot theorem, it
intersects the cubic surface along C and on a a space of degree
3 − 2 = 1

That is, the system of equations

p1 + p2 + p3 + p4 − 1 = 0

p21p4 − p2p
2

3 = 0

αp1 + βp3 = 0

admits as a solution C and a line
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Lowering the Degree on the Invariant

The system of equations

p1 + p2 + p3 + p4 − 1 = 0

p21p4 − p2p
2
3 = 0

αp1 + βp3 = 0

can be reduced to

p1 + p2 + p3 + p4 − 1 = 0

αp1 + βp3 = 0

−α2p2 + β
2p4 = 0
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A New Parametrization for the Model

In parametric form, the line in becomes

p1([α ∶ β], t) = βt
p2([α ∶ β], t) = β2

α2 + β2
+
β2(α − β)
α2 + β2

t

p3([α ∶ β], t) = −αt
p4([α ∶ β], t) = α2

α2 + β2
+
α2(α − β)
α2 + β2

t

By setting α = β − 1, 0 < t < 1,−1 < α < 0, we get:

p1(α, t) = (α + 1)t
p2(α, t) = α2 − (α2 + 2α + 1)t + 2α + 1

2α2 + 2α + 1
p3(α, t) = −αt
p4(α, t) = − α2t − α2

2α2 + 2α + 1
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The Ruled Surface in ∆3

−1 0
0

1

α

t

(α, t) parameterization

p 1

p 3

p 4

p 2

Probability simplex ∆3

The critical line C is the dashed line
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The Ruled Surface in the (Full) Marginal Polytope

By the linear mapping between p and η, lines map to lines

0 1 2
0

1

η1

η2

Marginal polytope
0

1
2

0

1
−2

−1

0

1

2

η1

η2

η3

Full marginal polytope

Each line intersects δ2 ↔ δ4 and δ1 ↔ δ3 in

a = ( 2α2

2α2 + 2α + 1
,1,

2α + 1

2α2 + 2α + 1
) b = (−α,0,−4α − 2)
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Extension of the Model

Lines can be extended outside of ∆3 and of the marginal polytope

−1 0

0

1

α

t

(α, t) parameterization

−1 0 1 2 3

0

1

η1

η2

Marginal polytope
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Extension of the Model

p 4

p 3

p 2

p 1

Probability Simplex ∆3
−1

0
1

2
3

−1

0

1

2

−3

−2

−1

0

1

2

3

η2
η1

η3

Full marginal polytope
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Back to the SR

The expectation parameters become rational functions of (α, t)
⎡⎢⎢⎢⎢⎢⎣
η1
η2
η3

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
−α
0

−4α − 2

⎤⎥⎥⎥⎥⎥⎦
+ t

⎡⎢⎢⎢⎢⎢⎢⎣
2α3+4α2+α
2α2+2α+1

1
8α3+12α2+10α+3

2α2+2α+1

⎤⎥⎥⎥⎥⎥⎥⎦
The same applies to the (inverse) Fisher Information matrix and the
natural gradient, which now can be computed by

∇̃Fη(α, t) = Iη(α, t)−1∇Fη(α, t)
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Case 1: Gradient Flows in (α, t)

Consider the case with c0 = 0, c1 = 1, c2 = 2, c3 = 3

−1 0

0

1

α

 

 

t

1

2

3

4

5

6

7

8

9

10

Vanilla gradient

−1 0

0

1

α

 

 

t

1

2

3

4

5

6

7

8

9

10

Natural gradient

The function f admis one global minima



63/1

Case 1: Gradient Flows on the Marginal Polytope

Consider the case with c0 = 0, c1 = 1, c2 = 2, c3 = 3

0 1 2

0

1

η1

 

 

η2

1

2

3

4

5

6

7

8

9

Vanilla gradient

0 1 2

0

1

η1

 

 

η2

1

2

3

4

5

6

7

8

9

Natural gradient

The function f admis one global minima
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Case 2: Gradient Flows in (α, t)

Consider the case with c0 = 0, c1 = 1, c2 = 2, c3 = −5/2

−1 0

0

1

α

 

 

t

−1

−0.5

0

0.5

1

1.5

2

Vanilla gradient

−1 0

0

1

α

 

 

t

−1

−0.5

0

0.5

1

1.5

2

Natural gradient

The function f admis two local minima
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Case 2: Gradient Flows on the Marginal Polytope

Consider the case with c0 = 0, c1 = 1, c2 = 2, c3 = −5/2

0 1 2

0

1

η1

 

 

η2

−0.5

0

0.5

1

1.5

Vanilla gradient

0 1 2

0

1

η1

η
2

 

 

−0.5

0

0.5

1

1.5

Natural gradient

The function f admis two local minima
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Some Remarks

By exploiting the fact that surface in the probability simplex given
by the invariant is a ruled surface, we introduced a new
parametrization for the model
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Some Remarks

By exploiting the fact that surface in the probability simplex given
by the invariant is a ruled surface, we introduced a new
parametrization for the model

In the new parametrization, the natural gradient is given by a
rational formula

The model can be extended, the Fisher information matrix, and the
natural gradient can be evaluated also for negative probabilities

The approach is more general than this specific example, and is
based on the evaluation of the Markov basis for the orthogonal
space and on the intersection of sheaf of planes on exposed faces of
the model

Work in progress: the tutorial example is going to appear on
Entropy this month, another paper is in preparation


