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1
Optimization by Population-based EC

In EC, a common approach to optimize a function is to evolve

iteratively a population by applying different operators which ensures

a tradeoff between

◾ exploitation (e.g., selective pressure)

◾ exploration (e.g., variation, genetic diversity)
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Optimization by Population-based EC

In EC, a common approach to optimize a function is to evolve

iteratively a population by applying different operators which ensures

a tradeoff between

◾ exploitation (e.g., selective pressure)

◾ exploration (e.g., variation, genetic diversity)

Many Evolutionary Algorithms (EAs) follow such paradigm, and can

be defined as population-based, e.g.,

◾ Genetic Algorithms (GAs)

◾ Ant Colony Optimization (ACO)

◾ Particle Swarm Optimization (PSO)

◾ Evolution Strategies (ES)

◾ and many others. . .
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Population-based EC: Genetic Algorithms

Let us introduce some notation

◾ Ω the search space

◾ f ∶ Ω→ R the function to be optimized

◾ Pt = {x ∈ Ω} a population of individuals at time t

◾ P0 the initial (e.g., random) population
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Population-based EC: Genetic Algorithms

Let us introduce some notation

◾ Ω the search space

◾ f ∶ Ω→ R the function to be optimized

◾ Pt = {x ∈ Ω} a population of individuals at time t

◾ P0 the initial (e.g., random) population

The basic iteration of a naïve GA can be described as

Pt
selection
ÐÐÐÐ→ P

s
t

crossover
ÐÐÐÐÐ→ P

c
t

mutation
ÐÐÐÐ→ Pt+1
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A Toy Example with 2 Binary Variables

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2
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A Toy Example with 2 Binary Variables

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2
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From Populations to Probability Distributions

A population P can be seen as a sample i. i. d.∼ p, p probability

distribution in the simplex ∆ for discrete Ω, and p probability density

for continuous Ω

Let N denote the sample size

P
estimation // p̂ P p

samplingoo

For unbiased estimators and N →∞ (infinite population size analysis)

P
estimation // p

Such approach is at the basis of the theoretical analysis of Vose

(1999) on SGA

We can describe genetic operators as maps from the probability

simplex to the the probability simplex itself, e.g.,

selection ∶∆ ∋ p↦ ps ∈∆
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From Hypercubes to Probability Simplices

A run of a population-based EA identifies a sequence of points in ∆

Single run of the
GA:

Pt

selection //

estimation
��

Ps

t

crossover //

��

Pc

t

mutation //

��

Pt+1

��
p̂t p̂st p̂ct p̂t+1
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5
From Hypercubes to Probability Simplices

A run of a population-based EA identifies a sequence of points in ∆

Single run of the
GA:

Pt

selection //

estimation
��

Ps

t

crossover //

��

Pc

t

mutation //

��

Pt+1

��
p̂t p̂st p̂ct p̂t+1

A run can be seen as a realization of the expected behavior of the algorithm

Expected behavior
of the GA:

PtOO
sampling

Ps

tOO
Pc

tOO
Pt+1OO

pt
selection // pst

crossover // pct
mutation // pt+1
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From Hypercubes to Probability Simplices

A run of a population-based EA identifies a sequence of points in ∆

Single run of the
GA:

Pt

selection //

estimation
��

Ps

t

crossover //

��

Pc

t

mutation //

��

Pt+1

��
p̂t p̂st p̂ct p̂t+1

A run can be seen as a realization of the expected behavior of the algorithm

Expected behavior
of the GA:

PtOO
sampling

Ps

tOO
Pc

tOO
Pt+1OO

pt
selection // pst

crossover // pct
mutation // pt+1

For unbiased estimators and N →∞, the map is one-to-one

Infinite population
size analysis of
the GA:

PtOO

��

selection // Ps

t

crossover //
OO

��

Pc

tOO

��

mutation // Pt+1OO

��
pt

selection // pst
crossover // pct

mutation // pt+1

L. Malagò, T. Glasmachers, GECCO, July 13, 2014



6
A Toy Example with 2 Binary Variables (cont.)

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2
P0 f(x)
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A Toy Example with 2 Binary Variables (cont.)

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2
P0 f(x)
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7
Model-Based Optimization

In model-based optimization, the search for the optimum of f is

performed explicitly in the space of probability distributions.
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7
Model-Based Optimization

In model-based optimization, the search for the optimum of f is

performed explicitly in the space of probability distributions.

By updating the parameters of a probability distribution, iterative

algorithms generate sequences of distributions.

Candidate solutions for the optimum of f can be obtained by

sampling.

A model-based algorithm is expected to produce a converging and

minimizing sequence, however

◾ Which statistical model to choose?

◾ How to generate such sequence?
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Examples of Model-based Algorithms

Evolutionary computation

◾ EDAs (Larrañaga and Lozano, 2002), DEUM framework (Shakya et al.,
2005)

Gradient descent

◾ SGD (Robbins and Monro, 1951), CMA-ES (Hansen and Ostermeier,

2001), NES (Wierstra et al., 2008), SNGD (M. et al., FOGA 2011), IGO
(Ollivier et al., 2011),

Boltzmann distribution and Gibbs sampler (Geman and Geman, 1984)

Simulated Annealing and Boltzmann Machines (Aarts and Korst, 1989)

The Cross-Entropy method (Rubinstein, 1997)

LP relaxation in pseudo-Boolean optimization (Boros and Hammer, 2001)

Methods of Moments (Meziat et al., 2001)
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Model-based EC: Estimation of Distribution

In Estimation of Distribution Algorithms (EDAs) a statistical model is

introduced to model interactions among variables of f

Genetic operators (crossover and mutation in GAs) are replaced by

statistical operators such as estimation and sampling
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Model-based EC: Estimation of Distribution

In Estimation of Distribution Algorithms (EDAs) a statistical model is

introduced to model interactions among variables of f

Genetic operators (crossover and mutation in GAs) are replaced by

statistical operators such as estimation and sampling

Let us introduce some more notation

◾ p(x,θ) a probability distribution over Ω parametrized by θ

◾ M = {p(x,θ) ∶ θ ∈ θ} a parametric statistical model

The basic iteration of an EDA can be described as

Pt
selection // Ps

t
estimation

(model selection)
// pt

sampling // Pt+1 pt ∈M
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9
Model-based EC: Estimation of Distribution

In Estimation of Distribution Algorithms (EDAs) a statistical model is

introduced to model interactions among variables of f

Genetic operators (crossover and mutation in GAs) are replaced by

statistical operators such as estimation and sampling

Let us introduce some more notation

◾ p(x,θ) a probability distribution over Ω parametrized by θ

◾ M = {p(x,θ) ∶ θ ∈ θ} a parametric statistical model

The basic iteration of an EDA can be described as

Pt
selection // Ps

t
estimation

(model selection)
// pt

sampling // Pt+1 pt ∈M
From a model-based perspective, we have

pt
sampling // Pt+1

selection // Ps
t+1

estimation

(model selection)
// pt+1
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Estimation of Distribution Algorithms

LetM to be the independence model for x = (x1, x2)
M = {p ∶ p(x) = p1(x1)p2(x2)},

with pi(xi) = P(Xi = xi)
We parametrizeM using marginal probabilities µi = pi(1), µ = [0,1]2
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Estimation of Distribution Algorithms

LetM to be the independence model for x = (x1, x2)
M = {p ∶ p(x) = p1(x1)p2(x2)},

with pi(xi) = P(Xi = xi)
We parametrizeM using marginal probabilities µi = pi(1), µ = [0,1]2

δ01 δ11

δ10δ00

µ2

µ1

L. Malagò, T. Glasmachers, GECCO, July 13, 2014



10
Estimation of Distribution Algorithms

LetM to be the independence model for x = (x1, x2)
M = {p ∶ p(x) = p1(x1)p2(x2)},

with pi(xi) = P(Xi = xi)
We parametrizeM using marginal probabilities µi = pi(1), µ = [0,1]2

δ01 δ11

δ10δ00

µ2

µ1

M identifies a 2-dimensional surface in ∆

Estimation of the parameters given a sample is obtained with a

maximum likelihood estimator, i.e., we count occurrences
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Back to the Toy Example with 2 Binary Variables

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2, independence model
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Back to the Toy Example with 2 Binary Variables

Example: Ω = {−1,1}2, f(x) = x1 + 2x2 + 3x1x2, independence model
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c
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Expected Fitness Landscape

In model-based optimization, the search for the optimum in Ω is

guided by a search in the space of the probability distributions.
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Expected Fitness Landscape

In model-based optimization, the search for the optimum in Ω is

guided by a search in the space of the probability distributions.

A natural choice is to optimize the expected value of f overM,

Ep[f] ∶ M → R

which can be expressed as a function of ξ, given a parameterization

for p(x,ξ) ∈M, i.e.,

ξ ↦ Eξ[f]
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13Equivalent Parameterizations for the

Independence Model p(x) = p1(x1)p2(x2)
Marginal probabilities µ = (µ1, µ2) ∈ [0,1]2
pi(xi) = P(Xi = xi) pi(1) = µi pi(−1) = 1 − µi

pi(xi) = (2µixi − xi + 1) /2
Eµ[f] = ∑

x∈Ω

f(x)p1(x1)p2(x2) = −4µ1 − 2µ2 + 12µ1µ2

Natural parameters θ = (θ1, θ2) ∈ R2 of the Exponential Family

p(x) = exp{θ1x1 + θ2x2 −ψ(θ)} ψ(θ) = ln ∑
x∈Ω

exp{θ1x1 + θ2x2} = lnZ(θ)
pi(xi) = eθixi

eθi + e−θi
Eθ[f] = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
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13Equivalent Parameterizations for the

Independence Model p(x) = p1(x1)p2(x2)
Marginal probabilities µ = (µ1, µ2) ∈ [0,1]2
pi(xi) = P(Xi = xi) pi(1) = µi pi(−1) = 1 − µi

pi(xi) = (2µixi − xi + 1) /2
Eµ[f] = ∑

x∈Ω

f(x)p1(x1)p2(x2) = −4µ1 − 2µ2 + 12µ1µ2

Natural parameters θ = (θ1, θ2) ∈ R2 of the Exponential Family

p(x) = exp{θ1x1 + θ2x2 −ψ(θ)} ψ(θ) = ln ∑
x∈Ω

exp{θ1x1 + θ2x2} = lnZ(θ)
pi(xi) = eθixi

eθi + e−θi
Eθ[f] = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
The mapping between the two parameterizations is one-to-one for p(x) > 0

θi = (ln(µi) − ln(1 − µi)) /2 µi = eθi

eθi + e−θi
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Gradient Flows on the Independence Model

Marginal probabilities µ
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Gradient flows ∇Eξ[f] depend on the parameterization

In the η parameters, ∇Eη[f] does not convergence to the expected

distribution δx over an optimum
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Gradient Flows on the Independence Model

Marginal probabilities µ, λ = 0.025
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Gradient Flows on the Independence Model

Marginal probabilities µ, λ = 0.025
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In the θ parameters, ∇Eθ[f] vanishes over plateaux
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Gradient Flows on the Independence Model

Marginal probabilities µ, λ = 0.025
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In the θ parameters, ∇Eθ[f] vanishes over plateaux

We didn’t take into account the non-Euclidean geometry ofM
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Summary of the Intro

◾ There exists a common geometric framework to describe

population- and model-based EAs
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Summary of the Intro

◾ There exists a common geometric framework to describe

population- and model-based EAs

◾ Iterative algorithm generate sequences of distributions which can

be compared to the gradient flow of Ep[f]
◾ The choice of the statistical model and of the parameterization

plays an important role

◾ Euclidean geometry does not appear to be the proper geometry

forM

We need a more general mathematical framework, able to deal with

non-Euclidean geometries, to define a unifying perspective on

model-based optimization
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Outline

Part I

◾ Stochastic relaxation of the fitness functions

◾ Introduction to the Information Geometry of statistical models

◾ Natural Gradient

◾ Fitness landscape and model selection

Part II

◾ Natural Evolution Strategies

◾ Stochastic Natural Gradient Descent

◾ Information Geometric Optimization

◾ Convergence theorems

◾ Practical performance
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Stochastic Relaxation of f

Consider the following optimization problem

(P) min
x∈Ω

f(x)
We define Stochastic Relaxation (SR) of f the function

F ∶ p↦ Ep[f]
Given a statistical modelM = {p(x)}, we look for the solution of (P)

by generating minimizing sequences {pt} inM for F (p)
Let ξ be a parameterization forM, i.e.,M = {p(x;ξ) ∶ ξ ∈ Ξ}, the SR

can be expressed as

(SR) min
ξ∈Ξ

F (ξ)
We move the search to the space of probability distribution

The parameters ξ ∈ Ξ become the variables of the relaxed problem
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Equivalence of (P) and (SR)

Let us introduce some notation

◾ x∗ ∈ Ω∗ = argmin x∈Ω f(x) the global optima of f

◾ p∗ ∈M∗ = argmin p∈MF (ξ) the global optima of F

◾ M the topological closure ofM, i.e.,M together all limit

distributions of sequences {pt} ∈M
Candidate solutions for (P) can be sampled by solutions of the (SR)

Distributions inM∗ have reduced support and for discrete Ω

corresponds to faces of ∆

(P) and (SR) and equivalent if and only if from a solution of (SR) we

can sample points in Ω∗ with P(X = x∗) = 1
A sufficient condition is the inclusion of the Dirac distributions δx∗ in

M, i.e., there exists a sequence {pt} ∈M such that

lim
t→∞

F (pt) =min
x∈Ω

f(x)
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The Exponential Family

In the following, we consider models in the exponential family E

p(x,θ) = exp(m∑
i=1

θiTi(x) − ψ(θ))
◾ sufficient statistics T = (T1(x), . . . , Tm(x))
◾ natural parameters θ = (θ1, . . . , θm) ∈ θ
◾ log-partition function ψ(θ)
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21
The Exponential Family

In the following, we consider models in the exponential family E

p(x,θ) = exp(m∑
i=1

θiTi(x) − ψ(θ))
◾ sufficient statistics T = (T1(x), . . . , Tm(x))
◾ natural parameters θ = (θ1, . . . , θm) ∈ θ
◾ log-partition function ψ(θ)

Several statistical models belong to the exponential family (or its

closure), both in the continuous and discrete case

◾ independence model

◾ tree models

◾ log-linear models, i.e., Markov random fields

◾ multivariate Gaussians

◾ and many others. . .
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22The Gibbs Distribution

(Hwang, 1980; Geman and Geman, 1984)

◾ The Gibbs or Boltzmann distribution is the one dimensional

exponential family

p(x;β) = qe−βf

Eq[e−βf ] , β > 0
◾ The set of distributions is not weakly closed

lim
β→0

p(x;β) = q
lim
β→∞

p(x;β) = δΩ∗
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(Hwang, 1980; Geman and Geman, 1984)

◾ The Gibbs or Boltzmann distribution is the one dimensional

exponential family

p(x;β) = qe−βf

Eq[e−βf ] , β > 0
◾ The set of distributions is not weakly closed

lim
β→0

p(x;β) = q
lim
β→∞

p(x;β) = δΩ∗
◾ The limit pδ is the uniform distribution over the minima of f and

since ∇Eβ[f] = −Varβ(f) < 0, Eβ[f] decreases monotonically
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22The Gibbs Distribution

(Hwang, 1980; Geman and Geman, 1984)

◾ The Gibbs or Boltzmann distribution is the one dimensional

exponential family

p(x;β) = qe−βf

Eq[e−βf ] , β > 0
◾ The set of distributions is not weakly closed

lim
β→0

p(x;β) = q
lim
β→∞

p(x;β) = δΩ∗
◾ The limit pδ is the uniform distribution over the minima of f and

since ∇Eβ[f] = −Varβ(f) < 0, Eβ[f] decreases monotonically

Evaluating the partition function is computationally infeasible
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Information Geometry

The geometry of statistical models is not Euclidean

We need tools from differential geometry to define notions such as

tangent vectors, shortest paths and distances between distributions
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Information Geometry

The geometry of statistical models is not Euclidean

We need tools from differential geometry to define notions such as

tangent vectors, shortest paths and distances between distributions

Information Geometry (IG) consists of the study of statistical models

as manifolds of distributions endowed with the Fisher information

metric I (Amari 1982, 2001)
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The geometry of statistical models is not Euclidean

We need tools from differential geometry to define notions such as

tangent vectors, shortest paths and distances between distributions

Information Geometry (IG) consists of the study of statistical models

as manifolds of distributions endowed with the Fisher information

metric I (Amari 1982, 2001)
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Characterization of the Tangent Space of E

Over the manifold of distributions we introduce an affine chart in p

such that any density q is locally represented w.r.t. to the reference

measure p, i.e., q
p
− 1

The tangent space at each point p is defined by

Tp = {v ∶ Ep[v] = 0}
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24
Characterization of the Tangent Space of E

Over the manifold of distributions we introduce an affine chart in p

such that any density q is locally represented w.r.t. to the reference

measure p, i.e., q
p
− 1

The tangent space at each point p is defined by

Tp = {v ∶ Ep[v] = 0}
Consider a curve p(θ) such that p(0) = p, then ṗ

p
∈ Tp

In a moving coordinate system, tangent (velocity) vectors in Tp(θ) to

the curve are given by logarithmic derivatives

ṗ(θ)
p(θ) =

d

dθ
log p(θ)
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Characterization of the Tangent Space of E

The one dimensional model

p(θ) = exp{θT − ψ(θ)}
is a curve in the manifold, with tangent vector

ṗ(θ)
p(θ) = T −

d

dθ
ψ(θ)

On the other side, given a vector field, at each p we have a vector

U(p) tangent to some curve, we obtain a differential equation

d

dθ
log p(θ) = U(p),

whose solution is a one dimensional model in E
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26
(Natural) Gradient

Let (M, I) be a statistical manifold endowed with a metric I = [gij],
and let F (p) ∶ M ↦ R be a smooth function defined overM
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26
(Natural) Gradient

Let (M, I) be a statistical manifold endowed with a metric I = [gij],
and let F (p) ∶ M ↦ R be a smooth function defined overM

For each vector field U overM, the (natural) gradient of F , i.e., the

direction of steepest descent of F, denoted by ∇̃F , satisfies

g(∇̃F,U) = DU F,

where DU F is the directional derivative of F in the direction U
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26
(Natural) Gradient

Let (M, I) be a statistical manifold endowed with a metric I = [gij],
and let F (p) ∶ M ↦ R be a smooth function defined overM

For each vector field U overM, the (natural) gradient of F , i.e., the

direction of steepest descent of F, denoted by ∇̃F , satisfies

g(∇̃F,U) = DU F,

where DU F is the directional derivative of F in the direction U

In coordinates ξ we have

∇̃ξF = k∑
i=1

k∑
j=1

gij
∂F

∂ξi

∂

∂ξj
= I(ξ)−1∇ξF
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26
(Natural) Gradient

Let (M, I) be a statistical manifold endowed with a metric I = [gij],
and let F (p) ∶ M ↦ R be a smooth function defined overM

For each vector field U overM, the (natural) gradient of F , i.e., the

direction of steepest descent of F, denoted by ∇̃F , satisfies

g(∇̃F,U) = DU F,

where DU F is the directional derivative of F in the direction U

In coordinates ξ we have

∇̃ξF = k∑
i=1

k∑
j=1

gij
∂F

∂ξi

∂

∂ξj
= I(ξ)−1∇ξF

There is only one (natural) gradient of F given by the geometry ofM

We use ∇̃ξF to distinguish the natural gradient from the vanilla

gradient ∇ξF , i.e., the vector of partial derivatives of F w. r. t. ξ

L. Malagò, T. Glasmachers, GECCO, July 13, 2014



27
Geometry of the Exponential Family

In case of a finite sample space X , we have

p(x;θ) = exp( k∑
i=1

θiTi(x) − ψ(θ)) θ ∈ Rk

and

Tθ = {v ∶ v = k∑
i=1

ai(Ti(x) −Eθ[Ti]), ai ∈ R}
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27
Geometry of the Exponential Family

In case of a finite sample space X , we have

p(x;θ) = exp( k∑
i=1

θiTi(x) − ψ(θ)) θ ∈ Rk

and

Tθ = {v ∶ v = k∑
i=1

ai(Ti(x) −Eθ[Ti]), ai ∈ R}

Since ∇θF = Covθ(f,T ), if f ∈ Tp, the steepest direction is given by

f − Eθ[f], otherwise we take the projection of f onto Tp

f̂ = k∑
i=1

âi(Ti(x) −Eθ[Ti]),
and obtain f̂ by solving a system of linear equations
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Geometry of Statistical Models

Since f − f̂ is orthogonal to Tp

Eθ[(f − f̂θ)(T − Eθ[T ])] = Covθ(f − f̂θ, T ) = 0,
from which we obtain, for i = 1, . . . , k,

Covθ(f,Ti) = Covθ(f̂θ, Ti) = k∑
j=1

âj Covθ(Tj , Ti)
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28
Geometry of Statistical Models

Since f − f̂ is orthogonal to Tp

Eθ[(f − f̂θ)(T − Eθ[T ])] = Covθ(f − f̂θ, T ) = 0,
from which we obtain, for i = 1, . . . , k,

Covθ(f,Ti) = Covθ(f̂θ, Ti) = k∑
j=1

âj Covθ(Tj , Ti)

As the Hessian matrix of ψ(θ) is invertible, we have

â = [Covθ(Ti, Tj)]−1Covθ(f,T ) = I(θ)−1∇F (θ)
In case f ∈ Span{T1, . . . , Tk}, then f̂θ = f
By taking projection of f to Tp, we obtained the natural gradient ∇̃F ,

i.e., the gradient evaluated w.r.t. the Fisher information metric I
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Natural Gradient and Fitness Modeling

Theorem 1 (M. et al., CEC 2013)

If the sufficient statistics {Ti} of p(x; θ) ∈ E are centered in θ, i.e.,

Eθ[Ti] = 0, then the least squares estimator ĉN with respect to an

i. i. d. sample P from p of the regression model

f̂(x) =∑
i

aiTi(x)
converges to the natural gradient ∇̃Eθ[f], as N →∞

Proof.

âN = (A⊺A)−1A⊺y
= [ 1

N
∑
x∈P

Ti(x)Tj(x)]
−1

x,i

( 1
N
∑
x∈P

f(x)Ti(x))
i

= [Ĉov(Ti, Tj) + Ê[Ti]Ê[Tj]]−1x,i (Ĉov(f,Ti) + Ê[f]Ê[Ti])i
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The Big Picture

If f ∉ Tp, the projection f̂ may vanish, and local minima may appear
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30
The Big Picture

If f ∉ Tp, the projection f̂ may vanish, and local minima may appear

For finite Ω, f = ∑α∈L cαx
α with x =∏i x

αi

i and L = {0,1}n, consider

the exponential family E with sufficient statistics Tβ(x) = xβ, with

β ∈M = {0,1}n ∖ 0, then f ∈ Tp iff L ∖M ∪ 0
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Vanilla vs Natural Gradient: η, λ = 0.05

Vanilla gradient ∇F
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Vanilla vs Natural Gradient: η, λ = 0.05

Vanilla gradient ∇F
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Natural gradient ∇̃F
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There exist two basins of attraction, ∇̃Eη[f] convergences to δx
distributions, which are local optima for F, i.e., ∇̃Eδx[f] = 0
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Vanilla vs Natural Gradient: θ, λ = 0.15

Vanilla gradient ∇F
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32
Vanilla vs Natural Gradient: θ, λ = 0.15

Vanilla gradient ∇F
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Natural gradient ∇̃F
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In the natural parameters ∇̃Eθ[f] speeds up over the plateaux
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Vanilla vs Natural Gradient

Expectation parameters η
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Natural parameters θ
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Vanilla gradient ∇F vs Natural gradient ∇̃F
For infinitesimal step size (λ → 0), the gradient flow is invariant to

parameterization

L. Malagò, T. Glasmachers, GECCO, July 13, 2014



34
Choice ofM

The choice of the statistical modelM determines the landscape of F

Independence model, θ = (θ1, θ2,0)
p(x) = exp{θ1x1 + θ2x2 −ψ(θ)}

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

θ1

θ
2

−2

0

2

4

 −2 

 0 

 2 

 4 

L. Malagò, T. Glasmachers, GECCO, July 13, 2014



34
Choice ofM

The choice of the statistical modelM determines the landscape of F

Independence model, θ = (θ1, θ2,0)
p(x) = exp{θ1x1 + θ2x2 −ψ(θ)}
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Exponential family, θ = (0, θ2, θ12)
p(x) = exp{θ2x2 + θ12x1x2 −ψ(θ)}
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Vanilla gradient ∇F vs Natural gradient ∇̃F
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Generating minimizing sequences {pt}
In model-based optimization, the relaxed problem (SR) can be

approached with different techniques, among the other we have

◾ Estimation of distribution EDAs, see Larrañaga and Lozano

(2002) for a review

◾ Covariance Matrix Adaptation CMA-ES (Hansen and

Ostermeier, 2001)

◾ Fitness modelling DEUM framework (Shakya et al., 2005)

◾ Gradient descent NES (Wierstra et al., 2008), SNGD (M. et al.,

FOGA 2011), IGO (Arnold et al., 2011)

In the following we will show how a geometrical framework based on

Information Geometry can be exploited to relate these different

approaches
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A General Framework for Algorithms
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◾ In the first part we have seen natural gradients on distributions.
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37
A General Framework for Algorithms

◾ In the first part we have seen natural gradients on distributions.

◾ Now we will derive concrete algorithms from this general

framework.

◾ Design choices:

◾ search space: discrete or continuous, structure?

◾ statistical model?

◾ stochastic relaxation?

◾ efficient computation/estimation of the natural gradient?
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The Log-Likelihood Trick

Assume the objective Wf(ξ) = Eξ[w(f(x))].
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The Log-Likelihood Trick

Assume the objective Wf(ξ) = Eξ[w(f(x))].
∇ξWf(ξ) = ∇ξEξ[w(f(x))]

= ∇ξ ∫
Ω

w(f(x)) ⋅ p(x∣ξ)dx
= ∫

Ω

w(f(x)) ⋅ ∇ξp(x∣ξ)dx
= ∫

Ω

w(f(x)) ⋅ ∇ξp(x∣ξ) ⋅ p(x∣ξ)
p(x∣ξ) dx

= ∫
Ω

w(f(x)) ⋅ ∇ξp(x∣ξ)
p(x∣ξ) ⋅ p(x∣ξ)dx

= Eξ [w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]
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38
The Log-Likelihood Trick

Assume the objective Wf(ξ) = Eξ[w(f(x))].
∇ξWf(ξ) = ∇ξEξ[w(f(x))]

= ∇ξ ∫
Ω

w(f(x)) ⋅ p(x∣ξ)dx
= ∫

Ω

w(f(x)) ⋅ ∇ξp(x∣ξ)dx
= ∫

Ω

w(f(x)) ⋅ ∇ξp(x∣ξ) ⋅ p(x∣ξ)
p(x∣ξ) dx

= ∫
Ω

w(f(x)) ⋅ ∇ξp(x∣ξ)
p(x∣ξ) ⋅ p(x∣ξ)dx

= Eξ [w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]
The gradient of the expectation can be written as the expectation of a

weighted gradient of the log likelihood.
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The Log-Likelihood Trick

∇ξWf(ξ) = Eξ [w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]
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The Log-Likelihood Trick

∇ξWf(ξ) = Eξ [w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]

◾ The expected value can be estimated efficiently.
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39
The Log-Likelihood Trick

∇ξWf(ξ) = Eξ [w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]

◾ The expected value can be estimated efficiently.

◾ Its Monte Carlo estimate reads:

∇ξWf(ξ) ≈ 1

N
∑

x1,...,xN∼Pξ

w(f(xi)) ⋅ ∇ξ log (p(xi∣ξ))
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39
The Log-Likelihood Trick

∇ξWf(ξ) = Eξ [w(f(x)) ⋅ ∇ξ log (p(x∣ξ))]

◾ The expected value can be estimated efficiently.

◾ Its Monte Carlo estimate reads:

∇ξWf(ξ) ≈ 1

N
∑

x1,...,xN∼Pξ

w(f(xi)) ⋅ ∇ξ log (p(xi∣ξ))

◾ Note: neither the gradient of Wf nor its approximation require the

gradient of f .
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Stochastic Gradient Descent (SGD)

◾ Gradient Descent (GD):

ξ ← ξ − γ ⋅ ∇ξWf(ξ) .
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Stochastic Gradient Descent (SGD)

◾ Gradient Descent (GD):

ξ ← ξ − γ ⋅ ∇ξWf(ξ) .
◾ The parameter γ > 0 is called learning rate.

◾ Following an unbiased gradient estimate G(ξ)
(with E[G(ξ)] = ∇ξWf(ξ)) is known as

stochastic gradient descent (SGD):

ξ ← ξ − γ ⋅G(ξ) .
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◾ Gradient Descent (GD):

ξ ← ξ − γ ⋅ ∇ξWf(ξ) .
◾ The parameter γ > 0 is called learning rate.

◾ Following an unbiased gradient estimate G(ξ)
(with E[G(ξ)] = ∇ξWf(ξ)) is known as

stochastic gradient descent (SGD):

ξ ← ξ − γ ⋅G(ξ) .
◾ This is a well-established optimization algorithm with many

applications, e.g., in machine learning.
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Stochastic Gradient Descent (SGD)

◾ Gradient Descent (GD):

ξ ← ξ − γ ⋅ ∇ξWf(ξ) .
◾ The parameter γ > 0 is called learning rate.

◾ Following an unbiased gradient estimate G(ξ)
(with E[G(ξ)] = ∇ξWf(ξ)) is known as

stochastic gradient descent (SGD):

ξ ← ξ − γ ⋅G(ξ) .
◾ This is a well-established optimization algorithm with many

applications, e.g., in machine learning.

◾ Replacing ∇Wf(ξ) with ∇̃Wf(ξ) results in stochastic natural

gradient descent (SNGD).
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40
Stochastic Gradient Descent (SGD)

◾ Gradient Descent (GD):

ξ ← ξ − γ ⋅ ∇ξWf(ξ) .
◾ The parameter γ > 0 is called learning rate.

◾ Following an unbiased gradient estimate G(ξ)
(with E[G(ξ)] = ∇ξWf(ξ)) is known as

stochastic gradient descent (SGD):

ξ ← ξ − γ ⋅G(ξ) .
◾ This is a well-established optimization algorithm with many

applications, e.g., in machine learning.

◾ Replacing ∇Wf(ξ) with ∇̃Wf(ξ) results in stochastic natural

gradient descent (SNGD).

◾ Concrete scheme for iterative optimization of Wf(ξ).
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Continuous Optimization with NES

◾ Such a scheme was first proposed by Wierstra et al. in 2008.
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Continuous Optimization with NES

◾ Such a scheme was first proposed by Wierstra et al. in 2008.

◾ Original Natural Evolution Strategies (NES) approach: SNGD

on expected fitness Wf(ξ) = Eξ[f(x)] with multi-variate

Gaussians N (m,C).
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41
Continuous Optimization with NES

◾ Such a scheme was first proposed by Wierstra et al. in 2008.

◾ Original Natural Evolution Strategies (NES) approach: SNGD

on expected fitness Wf(ξ) = Eξ[f(x)] with multi-variate

Gaussians N (m,C).
◾ Closed form Fisher matrix:

Ii,j = ∂mT

∂ξi
C−1

∂m

∂ξj
+
1

2
tr(C−1∂C

∂ξi
C−1

∂C

∂ξj
)
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41
Continuous Optimization with NES

◾ Such a scheme was first proposed by Wierstra et al. in 2008.

◾ Original Natural Evolution Strategies (NES) approach: SNGD

on expected fitness Wf(ξ) = Eξ[f(x)] with multi-variate

Gaussians N (m,C).
◾ Closed form Fisher matrix:

Ii,j = ∂mT

∂ξi
C−1

∂m

∂ξj
+
1

2
tr(C−1∂C

∂ξi
C−1

∂C

∂ξj
)

◾ Practical versions of NES apply many performance enhancing

techniques like rank-based utilities and non-uniform learning

rates that complement the SNGD approach.
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Natural Gradients for Gaussian Distributions

◾ Ω = Rd, ξ = (m,C), Gaussian density:

p(x∣ξ) = 1√(2π)d det(C) exp(−
1

2
(x −m)TC−1(x −m)) .

L. Malagò, T. Glasmachers, GECCO, July 13, 2014



42
Natural Gradients for Gaussian Distributions

◾ Ω = Rd, ξ = (m,C), Gaussian density:

p(x∣ξ) = 1√(2π)d det(C) exp(−
1

2
(x −m)TC−1(x −m)) .

Its natural logarithm is

log (p(x∣ξ)) = −d
2
log(2π) − 1

2
tr(log(C)) − 1

2
(x −m)TC−1(x −m) .
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(x −m)TC−1(x −m)) .

Its natural logarithm is

log (p(x∣ξ)) = −d
2
log(2π) − 1

2
tr(log(C)) − 1

2
(x −m)TC−1(x −m) .

◾ Represent covariance matrix with a factor: C =AAT .
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Natural Gradients for Gaussian Distributions

◾ Ω = Rd, ξ = (m,C), Gaussian density:

p(x∣ξ) = 1√(2π)d det(C) exp(−
1

2
(x −m)TC−1(x −m)) .

Its natural logarithm is

log (p(x∣ξ)) = −d
2
log(2π) − 1

2
tr(log(C)) − 1

2
(x −m)TC−1(x −m) .

◾ Represent covariance matrix with a factor: C =AAT .

◾ For x ∼N (m,C) introduce normalized sample

z =A−1(x −m) ∼N (0, I).
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42
Natural Gradients for Gaussian Distributions

◾ Ω = Rd, ξ = (m,C), Gaussian density:

p(x∣ξ) = 1√(2π)d det(C) exp(−
1

2
(x −m)TC−1(x −m)) .

Its natural logarithm is

log (p(x∣ξ)) = −d
2
log(2π) − 1

2
tr(log(C)) − 1

2
(x −m)TC−1(x −m) .

◾ Represent covariance matrix with a factor: C =AAT .

◾ For x ∼N (m,C) introduce normalized sample

z =A−1(x −m) ∼N (0, I).
◾ In tailored coordinates

(m′,A′) = (m +Aδ,A(I + 1

2
M))

centered to the current distribution (m,A) the Fisher matrix w.r.t.

the local parameters ξ = (δ,M) becomes the identity.
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Natural Gradients for Gaussian Distributions

◾ The (natural) gradient of the log density at (δ,M) = 0 is

∇̃δ log(p(x∣ξ)) = z

∇̃M log(p(x∣ξ)) = 1

2
(zzT − I)
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Natural Gradients for Gaussian Distributions

◾ The (natural) gradient of the log density at (δ,M) = 0 is

∇̃δ log(p(x∣ξ)) = z

∇̃M log(p(x∣ξ)) = 1

2
(zzT − I)

◾ The stochastic (natural) gradient of E[f] becomes

Gδ(ξ) = 1

N

N∑
i=1

f(xi) ⋅ zi
GM(ξ) = 1

2N

N∑
i=1

f(xi) ⋅ (zizTi − I)
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43
Natural Gradients for Gaussian Distributions

◾ The (natural) gradient of the log density at (δ,M) = 0 is

∇̃δ log(p(x∣ξ)) = z

∇̃M log(p(x∣ξ)) = 1

2
(zzT − I)

◾ The stochastic (natural) gradient of E[f] becomes

Gδ(ξ) = 1

N

N∑
i=1

f(xi) ⋅ zi
GM(ξ) = 1

2N

N∑
i=1

f(xi) ⋅ (zizTi − I)
◾ Tricks of the trade: replace “raw fitness” with “rank-based utility

weights”

f(x1) ≤ ⋅ ⋅ ⋅ ≤ f(xN) → u1 ≥ ⋅ ⋅ ⋅ ≥ uN
to achieve better invariance and faster convergence.
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Natural Evolution Strategies (NES)

Canonical NES algorithm with Gaussians N (m,C =AAT )
while stopping criterion not fulfilled do

// sample offspring

for i ∈ {1, . . . ,N} do
zi ← N (0, I)
xi ←m +A ⋅ zi

sort {(zi,xi)} w.r.t. f(xi)
// compute stochastic natural gradient

Gδ ←
1

N ∑N
i=1 ui ⋅ zi

GM ←
1

2N ∑N
i=1 ui ⋅ (zizTi − I)

// apply update

m ←m + γm ⋅A ⋅Gδ

A ←A ⋅ (I + γA ⋅GM)
loop
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Natural Evolution Strategies (NES)

◾ NES (Wierstra et al., 2008) is a CMA-ES-like algorithm from “first

principles”. It “explains” three aspects of ES from a single

principle:

◾ optimization – update of m

◾ step size control – update of σ = d

√
det(A)

◾ shape control (CMA) – update of A (or of A/σ)
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Natural Evolution Strategies (NES)

◾ NES (Wierstra et al., 2008) is a CMA-ES-like algorithm from “first

principles”. It “explains” three aspects of ES from a single

principle:

◾ optimization – update of m

◾ step size control – update of σ = d

√
det(A)

◾ shape control (CMA) – update of A (or of A/σ)

◾ However, it does not cover all aspects of CMA-ES:

◾ noise-countering techniques such as cumulation
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45
Natural Evolution Strategies (NES)

◾ NES (Wierstra et al., 2008) is a CMA-ES-like algorithm from “first

principles”. It “explains” three aspects of ES from a single

principle:

◾ optimization – update of m

◾ step size control – update of σ = d

√
det(A)

◾ shape control (CMA) – update of A (or of A/σ)

◾ However, it does not cover all aspects of CMA-ES:

◾ noise-countering techniques such as cumulation

◾ A few more tricks are required to make it fly:

◾ rank-based utilities replace fitness values

◾ different learning rates for mean and covariance

L. Malagò, T. Glasmachers, GECCO, July 13, 2014
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SNGD with Exponential Family

◾ Consider an exponential family

p(x∣θ) = exp( k∑
i=1

θiTi(x) − ψ(θ))
with sufficient statistics {Ti}.
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SNGD with Exponential Family

◾ Consider an exponential family

p(x∣θ) = exp( k∑
i=1

θiTi(x) − ψ(θ))
with sufficient statistics {Ti}.

◾ The derivative of the log density is simply

∂ log(p(x∣θ))
∂θi

= Ti(x) − E[Ti(x)] .
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46
SNGD with Exponential Family

◾ Consider an exponential family

p(x∣θ) = exp( k∑
i=1

θiTi(x) − ψ(θ))
with sufficient statistics {Ti}.

◾ The derivative of the log density is simply

∂ log(p(x∣θ))
∂θi

= Ti(x) − E[Ti(x)] .

◾ Hence also the gradient has a simple form:

Covθ (T (x),Wf(x)) .
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SNGD with Exponential Family

◾ The Fisher matrix has entries

Iij(θ) = Covθ (Ti(x),Tj(x)) .
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47
SNGD with Exponential Family

◾ The Fisher matrix has entries

Iij(θ) = Covθ (Ti(x),Tj(x)) .

◾ The natural gradient can be expressed solely in terms of

covariances:

∇̃Wf(θ) = Covθ (T (x),T (x))−1Covθ (T (x),Wf(x)) .
(see Malagò et al., 2011)
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SNGD with Exponential Family

◾ Example: bitstrings Ω = {−1,+1}n.
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◾ Then the probability simplex ∆ and hence the statistical manifold

M is finite dimensional.
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◾ Example: bitstrings Ω = {−1,+1}n.

◾ Then the probability simplex ∆ and hence the statistical manifold

M is finite dimensional.

◾ The sufficient statistics Ti(x) are square free monomials (x2i = 1).
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SNGD with Exponential Family

◾ Example: bitstrings Ω = {−1,+1}n.

◾ Then the probability simplex ∆ and hence the statistical manifold

M is finite dimensional.

◾ The sufficient statistics Ti(x) are square free monomials (x2i = 1).

◾ Each monomial characterizes a subset of bits the dependencies

of which can be modeled.
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48
SNGD with Exponential Family

◾ Example: bitstrings Ω = {−1,+1}n.

◾ Then the probability simplex ∆ and hence the statistical manifold

M is finite dimensional.

◾ The sufficient statistics Ti(x) are square free monomials (x2i = 1).

◾ Each monomial characterizes a subset of bits the dependencies

of which can be modeled.

◾ If the chosen model contains all interactions of variables in f

then there is only one (global) optimum of Wf . The natural

gradient will guide us there (see Malagò et al., 2011 for details).
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Information Geometric Optimization (IGO)

The Information Geometric Optimization (IGO) approach by

Ollivier et al. introduces a unifying perspective:
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49
Information Geometric Optimization (IGO)

The Information Geometric Optimization (IGO) approach by

Ollivier et al. introduces a unifying perspective:

◾ emphasizes invariance properties as a means to reduce the

number of arbitrary design choices,

◾ with a specific choice of Wf it explains the utility weights of NES

from within the framework,

◾ it highlights the role of the gradient flow as the “pure form” of the

EA, with the SNGD update being an approximation.
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Dynamic Stochastic Relaxation

◾ Expected fitness Wf(ξ) = Eξ[f(x)] is only one possible

stochastic relaxation of f .
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Dynamic Stochastic Relaxation

◾ Expected fitness Wf(ξ) = Eξ[f(x)] is only one possible

stochastic relaxation of f .

◾ We have already seen the generalization Wf(ξ) = Eξ[w(f(x))]
with a transformation w.
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Dynamic Stochastic Relaxation

◾ Expected fitness Wf(ξ) = Eξ[f(x)] is only one possible

stochastic relaxation of f .

◾ We have already seen the generalization Wf(ξ) = Eξ[w(f(x))]
with a transformation w.

◾ In IGO the weight function depends on the f -quantile under the

current distribution Pξ0 : w(f(x)) = w̃(q−1ξ0 (f(x))), where

qξ0 ∶ [0,1] → R encodes the quantiles of the distribution of f(x),
x ∼ Pξ0 .
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50
Dynamic Stochastic Relaxation

◾ Expected fitness Wf(ξ) = Eξ[f(x)] is only one possible

stochastic relaxation of f .

◾ We have already seen the generalization Wf(ξ) = Eξ[w(f(x))]
with a transformation w.

◾ In IGO the weight function depends on the f -quantile under the

current distribution Pξ0 : w(f(x)) = w̃(q−1ξ0 (f(x))), where

qξ0 ∶ [0,1] → R encodes the quantiles of the distribution of f(x),
x ∼ Pξ0 .

◾ E.g., qξ0(1/2) is the median of f -values, and w̃(p) = 1 for p < 1/2
and w̃(p) = 0 for p ≥ 1/2 encodes truncation (selection): only the

better half of the distribution enters the update equation.
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50
Dynamic Stochastic Relaxation

◾ Expected fitness Wf(ξ) = Eξ[f(x)] is only one possible

stochastic relaxation of f .

◾ We have already seen the generalization Wf(ξ) = Eξ[w(f(x))]
with a transformation w.

◾ In IGO the weight function depends on the f -quantile under the

current distribution Pξ0 : w(f(x)) = w̃(q−1ξ0 (f(x))), where

qξ0 ∶ [0,1] → R encodes the quantiles of the distribution of f(x),
x ∼ Pξ0 .

◾ E.g., qξ0(1/2) is the median of f -values, and w̃(p) = 1 for p < 1/2
and w̃(p) = 0 for p ≥ 1/2 encodes truncation (selection): only the

better half of the distribution enters the update equation.

◾ The dynamic choice of w = w(ξ0) rescales f to a locally relevant

range. It emphasizes local improvements relative to the current f

distribution.
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Dynamic Stochastic Relaxation

◾ Benefit 1: Wf becomes invariant under rank-preserving

transformations of fitness values.
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Dynamic Stochastic Relaxation

◾ Benefit 1: Wf becomes invariant under rank-preserving

transformations of fitness values.

◾ Benefit 2: the rank-based utility weights ui = w̃(q−1ξ0 (f(xi))) of

NES are obtained automatically in a principled manner.
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Dynamic Stochastic Relaxation
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transformations of fitness values.

◾ Benefit 2: the rank-based utility weights ui = w̃(q−1ξ0 (f(xi))) of

NES are obtained automatically in a principled manner.

◾ Drawback: the objective function W
ξ0
f
(ξ) becomes dependent on

the current distribution ξ = ξ0
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Dynamic Stochastic Relaxation

◾ Benefit 1: Wf becomes invariant under rank-preserving

transformations of fitness values.

◾ Benefit 2: the rank-based utility weights ui = w̃(q−1ξ0 (f(xi))) of

NES are obtained automatically in a principled manner.

◾ Drawback: the objective function W
ξ0
f
(ξ) becomes dependent on

the current distribution ξ = ξ0
◾ This means that the following situation may exist in principle:

W
ξ1
f
(ξ2) <W ξ1

f
(ξ1)

W
ξ2
f
(ξ3) <W ξ2

f
(ξ2)

W
ξ3
f
(ξ1) <W ξ3

f
(ξ3)

and the “optimization” turns around in circles...
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Dynamic Stochastic Relaxation

◾ Benefit 1: Wf becomes invariant under rank-preserving

transformations of fitness values.

◾ Benefit 2: the rank-based utility weights ui = w̃(q−1ξ0 (f(xi))) of

NES are obtained automatically in a principled manner.

◾ Drawback: the objective function W
ξ0
f
(ξ) becomes dependent on

the current distribution ξ = ξ0
◾ This means that the following situation may exist in principle:

W
ξ1
f
(ξ2) <W ξ1

f
(ξ1)

W
ξ2
f
(ξ3) <W ξ2

f
(ξ2)

W
ξ3
f
(ξ1) <W ξ3

f
(ξ3)

and the “optimization” turns around in circles...

◾ Provably, in important special cases this does not happen.
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Vector Field, ODE, and Flow

◾ The natural gradient ∇̃Wf(ξ) defines the vector field

V ∶ M → TM via V (ξ) = ∇̃Wf(ξ).
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Vector Field, ODE, and Flow

◾ The natural gradient ∇̃Wf(ξ) defines the vector field

V ∶ M → TM via V (ξ) = ∇̃Wf(ξ).
◾ Vector field → differential equation γ̇(t) = V (γ(t)) with solution

curves γ ∶ R → ξ. Following these curves is optimization.
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V ∶ M → TM via V (ξ) = ∇̃Wf(ξ).
◾ Vector field → differential equation γ̇(t) = V (γ(t)) with solution

curves γ ∶ R → ξ. Following these curves is optimization.

◾ The solution curves are collected in the flow ξt = ϕ(ξ, t).
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Vector Field, ODE, and Flow

◾ The natural gradient ∇̃Wf(ξ) defines the vector field

V ∶ M → TM via V (ξ) = ∇̃Wf(ξ).
◾ Vector field → differential equation γ̇(t) = V (γ(t)) with solution

curves γ ∶ R → ξ. Following these curves is optimization.

◾ The solution curves are collected in the flow ξt = ϕ(ξ, t).
◾ Note 1: just like the natural gradient itself this flow is

deterministic. This is achieved in the limit of infinite samples in

the MC approximation, corresponding to infinite population size.
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52
Vector Field, ODE, and Flow

◾ The natural gradient ∇̃Wf(ξ) defines the vector field

V ∶ M → TM via V (ξ) = ∇̃Wf(ξ).
◾ Vector field → differential equation γ̇(t) = V (γ(t)) with solution

curves γ ∶ R → ξ. Following these curves is optimization.

◾ The solution curves are collected in the flow ξt = ϕ(ξ, t).
◾ Note 1: just like the natural gradient itself this flow is

deterministic. This is achieved in the limit of infinite samples in

the MC approximation, corresponding to infinite population size.

◾ Note 2: in each point the flow moves tangential to the vector

field. This corresponds to re-evaluating the gradient after an

infinitesimal step, or to an infinitesimal leaning rate in the

gradient descent procedure.
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53
SNGD Algorithms

◾ An SNGD algorithm is a two-fold approximation of the flow:

◾ it discretizes time and performs Euler steps,

◾ it relies on a stochastic gradient based on sampling.
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SNGD Algorithms

◾ An SNGD algorithm is a two-fold approximation of the flow:

◾ it discretizes time and performs Euler steps,

◾ it relies on a stochastic gradient based on sampling.

◾ NES is a rather pure example of an such an algorithm.
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◾ An SNGD algorithm is a two-fold approximation of the flow:

◾ it discretizes time and performs Euler steps,

◾ it relies on a stochastic gradient based on sampling.

◾ NES is a rather pure example of an such an algorithm.

◾ Surprisingly many established algorithms are closely connected

to SNGD (or IGO) algorithms.
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53
SNGD Algorithms

◾ An SNGD algorithm is a two-fold approximation of the flow:

◾ it discretizes time and performs Euler steps,

◾ it relies on a stochastic gradient based on sampling.

◾ NES is a rather pure example of an such an algorithm.

◾ Surprisingly many established algorithms are closely connected

to SNGD (or IGO) algorithms.

◾ New perspective: EA approximates the flow, hence the flow is an

idealized EA.
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Connection to CMA-ES

◾ CMA-ES mean update:

m ←
µ∑
i=1

wi ⋅xi .
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54
Connection to CMA-ES

◾ CMA-ES mean update:

m ←
µ∑
i=1

wi ⋅xi .

◾ CMA-ES rank-µ covariance matrix update:

C← (1 − γC) ⋅C + γC ⋅ µ∑
i=1

wi ⋅ (xi −m)(xi −m)T .
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55
Connection to CMA-ES

◾ Both equations can be written as updates

m←m + γm ⋅
N∑
i=1

wi ⋅ (xi −m)
C←C + γC ⋅

N∑
i=1

wi ⋅ ((xi −m)(xi −m)T −C)
with fixed learning rate γm = 1 and wi = 0 for i > µ.
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Connection to CMA-ES

◾ Both equations can be written as updates

m←m + γm ⋅
N∑
i=1

wi ⋅ (xi −m)
C←C + γC ⋅

N∑
i=1

wi ⋅ ((xi −m)(xi −m)T −C)
with fixed learning rate γm = 1 and wi = 0 for i > µ.

◾ The change of coordinates C =AAT , x =Az +m reveals:

m←m + γm ⋅A ⋅
N∑
i=1

wi ⋅ zi

C←C + γC ⋅A ⋅ ( N∑
i=1

wi ⋅ (zizTi − I)) ⋅AT
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55
Connection to CMA-ES

◾ Both equations can be written as updates

m←m + γm ⋅
N∑
i=1

wi ⋅ (xi −m)
C←C + γC ⋅

N∑
i=1

wi ⋅ ((xi −m)(xi −m)T −C)
with fixed learning rate γm = 1 and wi = 0 for i > µ.

◾ The change of coordinates C =AAT , x =Az +m reveals:

m←m + γm ⋅A ⋅
N∑
i=1

wi ⋅ zi

C←C + γC ⋅A ⋅ ( N∑
i=1

wi ⋅ (zizTi − I)) ⋅AT

◾ This is essentially the IGO/NES SGD update (see Akimoto

2010).
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56
Connection to Maximum Likelihood Estimation

◾ The CMA-ES update equations can be written as

m← (1 − γm) ⋅m + γm ⋅ m̂ML ,

C← (1 − γC) ⋅C + γC ⋅ ĈML .
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56
Connection to Maximum Likelihood Estimation

◾ The CMA-ES update equations can be written as

m← (1 − γm) ⋅m + γm ⋅ m̂ML ,

C← (1 − γC) ⋅C + γC ⋅ ĈML .

◾ m̂ML = ∑N
i=1wi ⋅xi is the weighted Maximum Likelihood (ML)

estimator of m.
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56
Connection to Maximum Likelihood Estimation

◾ The CMA-ES update equations can be written as

m← (1 − γm) ⋅m + γm ⋅ m̂ML ,

C← (1 − γC) ⋅C + γC ⋅ ĈML .

◾ m̂ML = ∑N
i=1wi ⋅xi is the weighted Maximum Likelihood (ML)

estimator of m.

◾ The term

ĈML = µ∑
i=1

wi(xi −m)(xi −m)T
is the weighted ML estimator of C, provided that m remains

fixed.
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57
Further Connections

◾ A variety of further algorithms fits into the framework.
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◾ Among them are methods for discrete and continuous search

spaces.
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57
Further Connections

◾ A variety of further algorithms fits into the framework.
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Further Connections

◾ A variety of further algorithms fits into the framework.

◾ Among them are methods for discrete and continuous search

spaces.

◾ Sometimes only the essential principle fits in exactly, i.e., the

algorithm needs a little simplification or “clean-up” in order to fit.

◾ We refer to Ollivier 2011, Akimoto 2013, and Malagò et al. 2013

for examples.
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Convergence Results

◾ Establishing convergence of realistic EAs can be a hard task.

◾ Benefit of gradient flow over EA: easier to analyze.

◾ Question: Do all flow trajectories converge to the optimum?

◾ More formally, let δx∗ denote the Dirac peak over an (isolated)

optimum x∗ ∈ Ω. Does it hold limt→∞Pξt = δx∗ for all initial

conditions ξ?

◾ Note: convergence of the flow does not directly imply

convergence of stochastic approximate algorithms!
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◾ In the discrete case the optimum of the stochastically relaxed
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59
Representation of the Optimum

◾ Hidden prerequisite: the statistical model must be sufficiently

rich to focus the probability mass on optima Ω∗ ⊂ Ω.

◾ This is not a prerequisite for convergence of the flow to an

optimal distribution within (the closure of) the statistical model.

◾ However, it is a prerequisite for convergence to an optimal

distribution, possibly outside the closure of the family, and hence

to an optimum of the original problem minx∈Ω f(x).
◾ In the discrete case the optimum of the stochastically relaxed

problem describes an optimum of f ∶ Ω→ R iff a subset of S ⊂ Ω∗
corresponds to an exposed face A of the marginal polytope, i.e.,

if S = T −1(A) ⊂ Ω∗.
◾ Gaussians contain Dirac peaks in the limit.
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Convergence Results

Convergence of IGO flow:

Theorem (Akimoto et al. 2012, Glasmachers 2012)

Let f ∶ Rd
→ R be a strictly convex quadratic function with minimum x∗. Consider the

class N (m, σ2) of isotropic Gaussian search distributions. Then all trajectories of

the IGO flow converge to the boundary point m = x∗ and σ2 = 0 (corresponding to

δx∗ ).
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Convergence Results

Convergence of IGO flow:

Theorem (Akimoto et al. 2012, Glasmachers 2012)

Let f ∶ Rd
→ R be a strictly convex quadratic function with minimum x∗. Consider the

class N (m, σ2) of isotropic Gaussian search distributions. Then all trajectories of

the IGO flow converge to the boundary point m = x∗ and σ2 = 0 (corresponding to

δx∗ ).

Corollary (Akimoto et al. 2012)

The same holds for monotonically transformed functions.

Corollary (Akimoto et al. 2012)

The same holds in the vicinity of any twice continuously differentiable local optimum.
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Convergence Results with CMA

Convergence of IGO flow with fixed reference distribution:

Theorem (Akimoto 2012)

Consider f(x) = xT
Qx with strictly positive definite matrix Q and multivariate

Gaussian search distributionsN (m,C). Then it holds

m→ x
∗

C→Q
−1

.
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Convergence Results with CMA

Convergence of gradient flow of E[f]:
Lemma (Beyer 2014)

For multivariate Gaussians N (m,C) on a convex quadratic objective f(x) = xT
Qx

the gradient flow is defined by the differential equation

dm(t)
dt

= −2C(t)Qm(t)
dC(t)

dt
= −2C(t)QC(t)
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Convergence Results with CMA

Convergence of gradient flow of E[f]:
Lemma (Beyer 2014)

For multivariate Gaussians N (m,C) on a convex quadratic objective f(x) = xT
Qx

the gradient flow is defined by the differential equation

dm(t)
dt

= −2C(t)Qm(t)
dC(t)

dt
= −2C(t)QC(t)

A similar result was found by Akimoto for the IGO flow with fixed

reference distribution.
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Convergence Results with CMA

Convergence of gradient flow of E[f]:
Theorem (Beyer 2014)

The non-linear ordinary differential equation (ODE) system

dC(t)
dt

= −2C(t)QC(t)
with initial condition C(0) =C0 has the solution

C(t) = (C−10 + 2tQ)−1 .
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Convergence Results with CMA

Convergence of gradient flow of E[f]:
Theorem (Beyer 2014)

The non-linear ordinary differential equation (ODE) system

dC(t)
dt

= −2C(t)QC(t)
with initial condition C(0) =C0 has the solution

C(t) = (C−10 + 2tQ)−1 .

⇒ C(t)→Q−1

⇒ ∥C(t)Q−1∥ ∈O(1/t)
Beyer also obtains ∥m(t)∥ ∈O(1/t).
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Convergence Results with CMA

Convergence of IGO flow with IGO objective:

Theorem (Beyer 2014)

Under the assumption of (approximate) normality of fitness values the dynamics of

IGO (with quantile-based objective) are

m(t) ≈ α ⋅ exp (−√2/d ⋅ t) ⋅Q−1C−10 m0 ,

C(t) ≈ α ⋅ exp (−√2/d ⋅ t) ⋅Q−1 .

The flow converges at a linear rate, which is what we’d expect for an

evolution strategy.
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◾ Proofs for the discrete case and for isotropic and general
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Convergence Results – Summary

◾ Proofs for the discrete case and for isotropic and general

multi-variate Gaussians.

◾ Continuous case results are restricted to quadratic functions.

This models convergence to twice differentiable local optima.

◾ No results for more general problem classes like all convex

problems.

◾ Note once more: convergence results for the gradient flow do not

imply convergence of the EA.

◾ The deviations of the algorithm from the flow due of stochasticity

(finite populations) and finite step sizes (discrete time) are yet to

be understood.
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But honestly – does it really work?

◾ Many EAs apply update equations that can be explained from

information geometry.

◾ However, statistical models and stochastic relaxations do not

and will probably never cover all aspects of EAs.

◾ Realistic EAs can be built from (at least) two types of

components:

◾ update equations derived from information geometry,

◾ other (classic) tools for handling stochasticity.

◾ Each component must do its job.

◾ Information geometrical updates generally do a great job at

improving the search distribution, provided that stochastic effects

are sufficiently well controlled.
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Practical Performance

But honestly – does it really work?

As far as the above outlined role of information geometry in EAs is

concerned the clear answer is:

Yes, it works great!
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Practical Performance: BBOB 2013

source: N. Hansen, A few overview results from the GECCO BBOB workshops
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◾ Information geometry provides update equations for optimization

from first principles.

◾ This often amounts to SNGD applied to a stochastically relaxed

problem.

◾ This is an approximation to an optimization flow.

◾ It can help the analysis of existing algorithms like CMA-ES,

EDAs, and model-based optimization in general.

◾ It is a generic design principle for optimization algorithms on any

search space and for many families of search distributions.

◾ Dedicated algorithms such as NES were built on this principle.

◾ Algorithms respecting the information geometry of their search

distributions are among the top performers.
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70
Summary

◾ However, randomization is outside the framework. It must be

controlled by other means.

◾ Information geometric tools must be augmented with

“orthogonal” tools for control of stochastic effects—together they

provide a modern perspective on EA research.

◾ The same problem decomposition is a promising route for

theoretical analysis: the gradient flow is becoming a

well-investigated object, while more traditional tools (Markov

chain analysis, etc.) may be necessary to connect it to real EAs.
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