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Outline of the Tutorial
A gentle introductions to

▸ Optimization over manifolds: Riemannian optimization

▸ Geometry(-ies) of statistical models: Information Geometry

Relevant applications in Evolutionary Computation

▸ A geometric framework for model-based meta-heuristics:
Stochastic Relaxation

▸ Generalizations of population-based meta-heuristics:
Riemannian PSOs

“One geometry cannot be more true than another; it can only be
more convenient”. Henri Poincaré, Science and Hypothesis, 1902.
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Optimization Over Manifolds
Riemannian optimization refers to the optimization of a cost
function defined over a manifold

f ∶ M → R

Informally, a manifoldM is a non-linear space that generalizes the
notion of a Euclidean vector space, since it admits a structure that
looks “locally” Euclidean

Intuitively, think to lower-dimensional surface embedded in Rn
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Why Manifolds?
Manifolds appear naturally whenever we have some symmetry or
invariance properties in the cost function or in the constraints

They play an important role in linear algebra, signal processing,
robotics, machine learning, statistics, and many other fields

In general, by taking into account the structure of the problem,
more efficient numerical procedures can be developed

A mathematical framework for manifold optimization provides the
basis for convergence analysis of the optimization algorithms

Optimization Algorithms on Matrix Manifolds
P.-A. Absil, R. Mahony, and R. Sepulchre
Princeton University Press, 2008
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Some Examples of Manifolds

▸ The n−sphere

▸ The torus

▸ The set of rotation matrices
SO3 = {R ∶ RRT = 1 ∧ det(R) = 1}

▸ The Special Euclidean group SE3 = SO3 ×R3

▸ The cone of positive definite matrices

▸ The set of rank-k matrices

▸ The Gaussian distribution and more in general any exponential
family
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The n-sphere
The n-sphere is one of the simplest examples of manifold

Its structure arises for example by imposing a normalization
constraint on a Euclidean vector space

x

S2

On the n-sphere ∥x∥ = 1

E.g., the space of the eigenvectors of
a matrix

Sn is a n-dimensional manifold,
which can be embedded in Rn+1
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The Tangent Space
To implement first-order calculus, we need a differentiable structure

This is obtained by defining a tangent bundle TM, i.e., the set of
tangent spaces TpM for all p ∈ M

M

x

TxM

v1(0)

v2(0)
x1(t)

x2(t)

Intuitively tangent spaces can be identified by the set the velocity
vectors to all smooth curves passing through x
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Riemannian Metric
The tangent space is a vector space for which we can define an
inner product called Riemannian metric

g(v,w) = ⟨v,w⟩p ∶ TpM×TpM→ R

The inner product induces a norm

∥v∥p =
√

⟨v,v⟩p

The inner product can be used to measure the length of a curve
x(t) with t ∈ [a, b]

L(x(t)) = ∫
b

a

√
⟨ẋ(t), ẋ(t)⟩p dt

Geodesics are length minimizing curves between two points



7/45

Riemannian Metric
The tangent space is a vector space for which we can define an
inner product called Riemannian metric

g(v,w) = ⟨v,w⟩p ∶ TpM×TpM→ R

The inner product induces a norm

∥v∥p =
√

⟨v,v⟩p

The inner product can be used to measure the length of a curve
x(t) with t ∈ [a, b]

L(x(t)) = ∫
b

a

√
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Tangent Space of the n-sphere
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Tangent Space of the n-sphere

x

S2

v

The tangent space TxM is given by
all orthogonal vectors, i.e.,

{v ∈ Rn such that vTx = 0}

The inner product inherited by the
embedding the Euclidean space is
the standard inner product on Rn

Geodesics are the great circles of the
sphere
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Riemannian Gradient
Let f(x) ∶ M ↦ R be a smooth function over (M, g)

For each vector field v overM, the Riemannian gradient of f(x),
i.e., the direction of steepest ascent is the unique vector that
satisfies

g(grad f, v) = Dv f,

where Dv f is the directional derivative of f in the direction v

Given a coordinate system ξ forM we have

grad f(ξ) =
d

∑
i,j=1

gij
∂fξ

∂θi

∂

∂θj
= Gξ(ξ)−1∇fξ(ξ)

The Riemannian gradient depends on the metric g trough G = [gij]
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First-order Optimization: Riemannian Gradient Descent
Consider the Euclidean naïve implementation of gradient descent
over a manifold

xt+1 = xt − λgrad f(xt)

In principle xt+1 may not be a point inM for a given λ

Moreover, for finite λ, the invariance w.r.t. the parameterization is
lost, due to the discretization of the gradient flow

Such problem is addressed in Riemannian optimization using the
exponential map Expp
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Exponential Map
The exponential map is a map from the tangent space TxM to the
manifoldM, such that v is the tangent vector to the geodetic from
x to Expθt v

M

x

v

Expx(v)

TxM

The exponential map can be used to implement gradient descent

xt+1 = Expxt(−λgrad f(xt))

The exponential map may be hard to be computed, since it requires
the evaluation of the geodetic γ(t), with γ(0) = p for a given γ̇(0)
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Log Map
The exponential map is a smooth map and it can be inverted to
map points to the tangent space

The inverse exponential map is the log map, defined overM with
values in TM

M

x

Logx(y)

y

TxM
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Retraction Map
Exponential maps can be hard to be computed since they require
the computation of the geodetic, which is a hard task in general

Instead it is possible to consider retractions, i.e., maps from
tangent space to the manifold

Rx(v) ∶ TxM→M
with weaker conditions compared to the exponential maps, but yet
strong a enough first-order constraint which ensures convergence
properties

M

x

v

Rx(v)

TxM
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A Motivation from Optimization
LetM be a statistical model, i.e., a set of probability distributions
over a sample space Ω, for instance,

▸ Ω = Rd,M = Gaussian distribution
▸ Ω finite,M = multinomial distribution

Let F be a real-valued function defined overM, for instance,

▸ the log-likelihood of a sample x,
▸ for a f ∶ Ω→ R, the stochastic relaxation of f , i.e.,
F (p) = Ep[f]

We are interested in the following optimization problem

min
p∈M

F (p)
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Parametric Statistical Models
Given a parameterization ξ forM, i.e.,

M= {pξ(x;ξ) ∶ ξ ∈ Ξ},

we can reformulate the previous optimization problem in a
parametric form

min
ξ∈Ξ

Fξ(ξ)

then Fξ is a real-valued function defined over Ξ, e.g.,
▸ log-likelihood: Fξ(ξ) = L(ξ∣x) = log pξ(x;ξ)
▸ stochastic relaxation of f : Fξ = Eξ[f]

Independently from the nature of Ω and f , under some regularity
conditions overM, Ep[f] is smooth

For smooth F , it is natural to study gradient descent methods
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Gradient Descent Over Statistical Models
A natural approach consists in computing the derivative of F (ξ),
and implement a naive gradient descent

ξt+1 = ξt − λ∇Fξ(ξt)
▸ ∇ is shorthand for ∂

∂ξ

▸ λ > 0 step size

However a series of issues may arise:
▸ dependence on the parameterization
▸ gradient may point outside of the domain of Ξ

▸ target distribution may not be a critical point
▸ slow convergence over plateaux

Many of these issues are consequence of the choice of a Euclidean
geometry forM
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A Toy Example of Stochastic Relaxation
Let n = 2, x ∈ Ω = {−1,+1}2, suppose f(x) = x1 + 2x2 + 3x1x2

x1 x2 f(x)
+1 +1 6
+1 −1 −4
−1 +1 −2
−1 −1 0

−+

−−

++

+−

We want to minimize the stochastic relaxation F (p) = Ep[f] for p
in the independence model for x

In the following, we will study the Euclidean gradient flow for
different parameterizations, i.e., the solution of the differential
equation

ξ̇ = ∇Fξ(ξ)
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Gradient Flows on the Independence Model
Let µi = P(Xi = 1), then µ = (µ1, µ2) ∈ [0,1]

Fµ(µ) = ∑
x∈Ω

f(x)p1(x1)p2(x2) = −4µ1 − 2µ2 + 12µ1µ2

∇Fµ(µ) = (−4 + 12µ2,−2 + 12µ1)T

Gradient flow over µ

0.0 0.2 0.4 0.6 0.8 1.0

0
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0
.2

0
.4

0
.6

0
.8

1
.0

μ1

μ
2

-4

-2

0

2

4

6

∇F (µ)

Gradient vector over µ, λ = 0.025

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
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0
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0
.6

0
.8

1
.0

µ1

µ
2

∇Fµ(µ) does not vanish on local optima, projections are required
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Natural Parameters for the Independence Model
If we restrict to positive probabilities p > 0, we can represent the
interior of the independence model as the exponential family

p(x;θ) = exp{θ1x1 + θ2x2 − ψ(θ)}

where ψ(θ) = lnZ(θ) is the log-partition function

The natural parameters of the independence model represented as
an exponential family are θ = (θ1, θ2) ∈ R2, with

pi(xi) =
eθixi

eθi + e−θi

The mapping between marginal probabilities and natural
parameters is one-to-one for p > 0

θi =
1

2
(ln(µi) − ln(1 − µi)) µi =

eθi

eθi + e−θi
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Gradient Flows on the Independence Model

Fθ(θ) = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
∇Fθ(θ) = Eθ[f(X −Eθ[X])] = Covθ(f,X)

Gradient flow over θ

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
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3

θ1

θ
2
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0
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4

∇F (θ)

Gradient vectors over θ, λ = 0.15
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−
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−
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1

2
3

θ1

θ
2

In the natural parameters, ∇Fθ(θ) vanishes over the plateaux
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Gradient Flows on the Independence Model

Marginal probabilities µ
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Natural parameters θ
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Gradient flows of Fξ(ξ) depend on the parameterization ξ

The trajectories associated to ∇Fξ(ξ) may not convergence to the
expected distribution unless a projection is computed
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Information Geometry
Euclidean geometry is not the most convenient geometry for
statistical models, as (probably) first remarked by Hotelling (1930)
and Rao (1945)

Information Geometry follows a different geometric approach, given
by the representation of statistical models as Riemannian statistical
manifolds, endowed with the Fisher information metric

Besides the Riemannian one, Information Geometry also studies
other non-Euclidean geometries for statistical models, based on the
notion of dual affine manifolds

The research in Information Geometry has started in the 80’s, with
the pioneer work of Amari (1982,1985), Barndorff-Nielsen (1978),
Cencov (1982), Lauritzen (1987), Pistone and Sempi (1995) and
colleagues
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Standard References
Three monographs by Amari, who is considered the founder of
Information Geometry

▸ S.-I. Amari. Differential-geometrical methods in statistics. Lecture notes
in statistics, Springer-Verlag, Berlin, 1985.

▸ S.-I. Amari and Hiroshi Nagaoka. Methods of Information Geometry.
AMS, Oxford University Press, 2000. Translated from the 1993 Japanese
original by Daishi Harada.

▸ S.-I. Amari. Information Geometry and Its Applications. Springer, 2016.

Other standard references are

▸ M. Murray and J. Rice. Differential geometry and statistics. Monographs
on Statistics and Applied Probability 48. Chapman and Hall, 1993.

▸ R. E. Kass and P. W. Vos. Geometrical Foundations of Asymptotic
Inference. Series in Probability and Statistics, Wiley, 1997.
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Geometry Derived by the KL Divergence
An alternative geometry for a statistical model can be defined by
measuring infinitesimal distances using the Kullback-Leibler
divergence

DKL(p∣∣q) = ∫
Ω
p(x) log

p(x)
q(x) dx

It can be proved that such choice determines a Riemannian
structure forM, where the Fisher Information matrix plays the role
of metric tensor

The direction of steepest ascent ∆θ for a function Fθ can then be
evaluated by solving

arg min
∆θ

Fθ(θ +∆θ)

s.t. DKL(pθ ∣∣pθ+∆θ) = ε

where the constraints replaces ∥∆θ∥ = 1 in the Euclidean case
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Example: The Gaussian Distribution
ε−ball of constant KL divergence, ε = 0.02
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Amari’s Natural Gradient (1998) 1/2
By taking the second-order Taylor approximation of the KL
divergence in ξ we get

DKL(pξ∣∣pξ+∆ξ) = Eξ[log pξ] −Eξ[log pξ+∆ξ]
≈ Eξ[log pξ] −Eξ[log pξ] −Eξ[∇ log pξ]T∆ξ+

− 1

2
∆ξTEξ [∇2 log pξ]∆ξ

= 1

2
∆ξTI(ξ)∆ξ,

where Iξ(ξ) is the Fisher Information matrix

Iξ(ξ) = −Eξ [∇2 log pξ+∆ξ]
= Eξ [∇ log p(ξ)∇ log p(ξ)T]
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Amari’s Natural Gradient (1998) 2/2
We proceed by taking the first-order approximation of Fξ(ξ +∆ξ)

arg min
∆ξ

Fξ(ξ) + ∇Fξ(ξ)T∆ξ

s.t.
1

2
∆ξTIξ(ξ)∆ξ = ε

We apply the Lagrangian method, and solve for ∆ξ

∇∆ξ (Fξ(ξ) + ∇Fξ(ξ)T∆ξ − λ1

2
∆ξTIξ(ξ)∆ξ) = 0

∇Fξ(ξ) − λIξ(ξ)∆ξ = 0

∆ξ = λIξ(ξ)−1∇Fξ(ξ)

Such derivations lead to the natural gradient (Amari, 1998)

∇̃Fξ(ξ) = Iξ(ξ)−1∇Fξ(ξ)
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Vanilla vs Natural Gradient: η, λ = 0.05

Vanilla gradient ∇Fη(η)

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

η1

η
2

Natural gradient ∇̃Fη(η)

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

η1

η
2

In both cases there exist two basins of attraction, however ∇̃Fη(η)
convergences to δx distributions, which are local optima for Fη(η)
and where ∇̃Fη(δx) = 0
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Euclidean vs Natural Gradient: θ, λ = 0.15

Vanilla gradient ∇Fθ(θ)
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In both cases there exist two basins of attraction, however in the
natural parameters ∇̃Fθ(θ) “speeds up” over the plateaux
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Euclidean vs Natural Gradient: θ, λ = 0.15
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Euclidean vs Natural Gradient

Expectation parameters η
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Vanilla gradient ∇F vs Natural gradient ∇̃F

The natural gradient flow is invariant to parameterization
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Riemannian Geometry of Statistical Manifolds
In the previous slide the natural gradient has been derived by
imposing a constant KL divergence

From a differential geometry point of view, the natural gradient
corresponds to the Riemannian gradient over a statistical manifolds
endowed with the Fisher information metric
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The Exponential Family
In the following, we consider models in the exponential family E

p(x,θ) = exp(
m

∑
i=1

θiTi(x) − ψ(θ))

▸ sufficient statistics T = (T1(x), . . . , Tm(x))
▸ natural parameters θ = (θ1, . . . , θm) ∈ Θ ⊂ Rm

▸ log-partition function ψ(θ)
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Fisher Information Metric
The tangent space at each point p is defined by

TpM= {U(x) ∶ Ep[U(x)] = 0}

Consider a curve p(θ) such that p(0) = p, then ṗ
p ∈ Tp

In a moving coordinate system, tangent (velocity) vectors in Tp(θ)
to the curve are given by logarithmic derivative

ṗ(θ)
p(θ) = d

dθ
log p(θ) TpM= Span{Ti(x) −Ep[Ti(x)]}

The tangent space is provided with an inner product ⟨U,V ⟩p =
Ep[UV ] = uTI(p)v defined by the Fisher information matrix

Iθ(θ) = [gij] = Eθ [
d

dθi
log p(θ) d

dθj
log p(θ)]



34/45

Fisher Information Metric
The tangent space at each point p is defined by

TpM= {U(x) ∶ Ep[U(x)] = 0}

Consider a curve p(θ) such that p(0) = p, then ṗ
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Black-Box Optimization in Rn

The stochastic relaxation of a continuos function with respect to
the Gaussian distribution is a design principle for popular
model-based algorithms in Evolutionary Computation

▸ Covariance Matrix Adaptation CMA-ES (Hansen and
Ostermeier, 2001; Akimoto et. al., 2012)

▸ Natural Evolutionary Strategies - NES (Wiestra et. al.,
2008-14)

See also
▸ Malagò et. al., 2011, for the stochastic relaxation of
pseudo-Boolean functions with respect to the exponential
family

▸ Information Geometry Optimization - IGO (Ollivier et. al.,
2011) for a general framework for stochastic relaxation
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Gaussian distribution and Natural Gradient
CMA and NES explicitly implement a gradient descent paradigm for
F = Ep[f] with respect to the multivariate Gaussian distribution
N(µ,Σ)

µt+1 = µt − λgradF (µt,Σt)
Σt+1 = Σt − λgradF (µt,Σt)

Implementing natural gradient by itself is not sufficient, indeed
parameter tuning and other adaptation mechanisms play a
fundamental role for efficient algorithms
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Estimation of ∇̃F by Monte Carlo Methods
Due to the properties of the exponential family

Iθ(θ) = Hessψ(θ) = Covθ(T ,T )

Moreover, for F = Eθ[f], we have

∇Fθ(θ) = Cov(f,T ),

this implies

∇̃Fθ(θ) = Covθ(T ,T )−1 Cov(f,T )

It follows that vanilla and natural gradient in θ can be expressed in
terms of covariances that only depend on the evaluation of f

Thus Monte Carlo methods can be used in the estimation
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Natural Gradient in Machine Learning
Natural gradient (Amari, 1998) methods are becoming constantly
popular in machine learning, e.g.,

▸ Training of Neural Networks (Amari, 1997) and recently Deep
Learning (Ollivier et. al., 2014; Pascanu and Bengio, 2014;
Martens et. al 2015; Desjardins et. al., 2014)

▸ Reinforcement learning and Markov Decision Processes
(Kakade, 2001; Peters and Schaal, 2008)

▸ Stochastic Relaxation and Evolutionary Optimization (i.e.,
black-box derivative-free methods)
(Wiestra et. al., 2008-14; Malagò et. al., 2011; Ollivier et. al.,
2011; Akimoto et. al., 2012)

▸ Bayesian variational inference (Honkela et. al., 2008)
▸ Bayesian optimization
▸ and many others
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Manifold Optimization in Evolutionary Computation
Manifold optimization is an active and expanding research field

In the last 10 years the number of algorithms and applications
increased, with a focus on first- and second-order algorithms

More recently, notions from optimization over manifolds are
starting to appear also in the design of meta-heuristics, e.g.,

▸ Modified Particle Swarm Optimization for multilinear rank
approximations (Borckmans et. al., 2010)

▸ Oriented Bounding Box Computation Using Particle Swarm
Optimization (Borckmans and Absil, 2010)

▸ Manifold distance-based particle swarm optimization for
classification (Liu et. al., 2013)

▸ Fuzzy Adaptive Simulated Annealing in
Evolutionary Global Optimization, Manifolds and Applications
(Aguiar e Oliveira Junior, 2016)
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Derivative-free Optimization and Tangent Vectors
Black-box optimization doesn’t rely on exact first-order
information, thus the Riemannian gradient cannot be evaluated

However, the presence of a manifold structure for the domain of the
cost function has an impact on the evaluation of tangent vectors

M

x

v

Expx(v)

TxM

M

x

Logx(y)

y

TxM

Differently from an Euclidean space, where v = y − x, the tangent
vector v to the geodetic from x to y is obtained using the Log map
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(Euclidean) Particle Swart Optimization
PSO (Eberhart and Kennedy, 1995) is a popular population-based
algorithm where particles are evolving in the search space guided by
velocity vectors, i.e.,

vi(t + 1) = w(t)vi(t) + cαi(t)(yi(t) − xi(t)) + sβi(t)(ŷi(t) − xi(t))
xi(t + 1) = xi(t) + vi(t + 1)

where
▸ y is the best personal position so far
▸ ŷ the best global position found by the swarm
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Riemannian Particle Swart Optimization
Log and exponential maps (or retractions) are the tools required to
generalize population based-algorithms, such as PSO, to search
spaces which admit a manifold structure

vi(t + 1) = w(t)vi(t) + cαi(t)Logxi(t) yi(t) + sβi(t)Logxi(t) ŷi(t)
xi(t + 1) = Expxi(t+1) vi(t + 1)

▸ The formulæ for the log and the exponential maps depend on
the manifold structure associated to the search space

▸ By exploiting the manifold structure we have in general better
convergence properties

▸ However taking into account the manifold structure may result
in a higher computational cost for the algorithm
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Oriented Bounding Box Computation Using PSO
In the following we refer to Borckmans and Absil (2010), where
oriented bounding box are computed in R3 using PSO
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Take Home Messages

▸ The geometry of the search space plays an important role in
optimization

▸ Optimization over manifolds offers a formal framework for
design and analysis of algorithms

▸ The geometry of statistical models is much richer than one
could expect

▸ Information Geometry provides a unifying geometric framework
for the analysis of model-based optimization

▸ Riemannian optimization only recently started to play a role in
Evolutionary Computation

▸ There is a lot of room for further developments and
cross-fertilization between the two fields
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Open Postdocs Positions at RIST
The Romanian Institute of Science and Technology has multiple
postdoc positions on Information Geometry, Riemannian
Optimization and Deep Learning, funded by two 4-year EU Projects

Cluj-Napoca is the capital of
Transylvania and the 2nd largest city
in Romania

12 universities and over 70k students

IT hub (9% growth per year) - The
Silicon Valley of Transylvania

RIST is a private and non profit
research institute founded in 2008

Talk to me for more information or write me at malago@rist.ro

malago@rist.ro

